FINITE-RANK PRODUCTS OF TOEPLITZ OPERATORS IN SEVERAL COMPLEX VARIABLES

TRIEU LE

Abstract

For any $\alpha>-1$, let A_{α}^{2} be the weighted Bergman space on the unit ball corresponding to the weight $\left(1-|\mathbf{z}|^{2}\right)^{\alpha}$. We show that if all except possibly one of the Toeplitz operators $T_{f_{1}}, \ldots, T_{f_{r}}$ are diagonal with respect to the standard orthonormal basis of A_{α}^{2} and $T_{f_{1}} \cdots T_{f_{r}}$ has finite rank then one of the functions f_{1}, \ldots, f_{r} must be the zero function.

1. Introduction

As usual, let \mathbb{B}_{n} denote the open unit ball in \mathbb{C}^{n}. Let ν denote the Lebesgue measure on \mathbb{B}_{n} normalized so that $\nu\left(\mathbb{B}_{n}\right)=1$. Fix a real number $\alpha>-1$. The weighted Lebesgue measure ν_{α} on \mathbb{B}_{n} is defined by $\mathrm{d} \nu_{\alpha}(\mathbf{z})=$ $c_{\alpha}\left(1-|\mathbf{z}|^{2}\right)^{\alpha} \mathrm{d} \nu(\mathbf{z})$, where c_{α} is a normalizing constant so that $\nu_{\alpha}\left(\mathbb{B}_{n}\right)=1$. A direct computation shows that $c_{\alpha}=\frac{\Gamma(n+\alpha+1)}{\Gamma(n+1) \Gamma(\alpha+1)}$. Let L_{α}^{2} denote $L^{2}\left(\mathbb{B}_{n}, \mathrm{~d} \nu_{\alpha}\right)$ and L^{∞} denote $L^{\infty}\left(\mathbb{B}_{n}, \mathrm{~d} \nu\right)$, which is the same as $L^{\infty}\left(\mathbb{B}_{n}, \mathrm{~d} \nu_{\alpha}\right)$. We denote the inner product in L_{α}^{2} by $\langle\cdot, \cdot\rangle_{\alpha}$ and the corresponding norm by $\|\cdot\|_{2, \alpha}$.

The weighted Bergman space A_{α}^{2} consists of all functions in L_{α}^{2} which are holomorphic on \mathbb{B}_{n}. It is well-known that A_{α}^{2} is a closed subspace of L_{α}^{2}.

For any multi-index $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}$ (here \mathbb{N} denotes the set of all non-negative integers), we write $|\mathbf{m}|=m_{1}+\cdots+m_{n}$ and $\mathbf{m}!=$ $m_{1}!\cdots m_{n}!$. For any $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, we write $\mathbf{z}^{\mathbf{m}}=z_{1}^{m_{1}} \cdots z_{n}^{m_{n}}$ and $\overline{\mathbf{z}}^{\mathbf{m}}=\bar{z}_{1}^{m_{1}} \cdots \bar{z}_{n}^{m_{n}}$. The standard orthonormal basis for A_{α}^{2} is $\left\{e_{\mathbf{m}}: \mathbf{m} \in \mathbb{N}^{n}\right\}$, where

$$
e_{\mathbf{m}}(\mathbf{z})=\left[\frac{\Gamma(n+|\mathbf{m}|+\alpha+1)}{\mathbf{m}!\Gamma(n+\alpha+1)}\right]^{1 / 2} \mathbf{z}^{\mathbf{m}}, \mathbf{m} \in \mathbb{N}^{n}, \mathbf{z} \in \mathbb{B}_{n} .
$$

For a more detailed discussion of A_{α}^{2}, see Chapter 2 in [8].
Since A_{α}^{2} is a closed subspace of the Hilbert space L_{α}^{2}, there is an orthogonal projection P_{α} from L_{α}^{2} onto A_{α}^{2}. For any function $f \in L_{\alpha}^{2}$ the Toeplitz operator with symbol f is denoted by T_{f}, which is densely defined on A_{α}^{2} by $T_{f} \varphi=P_{\alpha}(f \varphi)$ for bounded holomorphic functions φ on \mathbb{B}_{n}. If f is a bounded function then T_{f} is a bounded operator on A_{α}^{2} with $\left\|T_{f}\right\| \leq\|f\|_{\infty}$

[^0]and $\left(T_{f}\right)^{*}=T_{\bar{f}}$. However, there are unbounded functions f that give rise to bounded operators T_{f}.

Let \mathcal{P} be the space of holomorphic polynomials in the variable $\mathbf{z}=$ $\left(z_{1}, \ldots, z_{n}\right)$ in \mathbb{C}^{n}. For any $f \in L_{\alpha}^{2}$ and holomorphic polynomials $p, q \in \mathcal{P}$ we have $\left\langle T_{f} p, q\right\rangle_{\alpha}=\int_{\mathbb{B}_{n}} p \bar{q} f \mathrm{~d} \nu_{\alpha}$. This shows that T_{f} can be viewed as an operator from \mathcal{P} into the space $L^{*}(\mathcal{P}, \mathbb{C})$ of conjugate-linear functionals on \mathcal{P}. More generally, for any compactly supported regular Borel measure μ on \mathbb{C}^{n}, we define $L_{\mu}: \mathcal{P} \longrightarrow L^{*}(\mathcal{P}, \mathbb{C})$ by the formula $L_{\mu} p(q)=\int_{\mathbb{C}^{n}} p \bar{q} \mathrm{~d} \mu$, for $p, q \in \mathcal{P}$. For $f \in L_{\alpha}^{2}$ if we let $\mathrm{d} \mu=f \mathrm{~d} \nu_{\alpha}$ then $T_{f}=L_{\mu}$ on \mathcal{P}. It follows from Stone-Weierstrass's Theorem that if $L_{\mu}=0$ then $\mu=0$. It is also immediate that if μ is a linear combination of point masses then L_{μ} has finite rank. That the converse is also true is the content of the following theorem, which had been an open conjecture for about twenty years. See [1, 6, 7].

Theorem 1.1. L_{μ} has finite rank if and only if μ is a (finite) linear combination of point masses.

Theorem 1.1 for the case $n=1$ was proved by D. Luecking in 6]. Using a refined version of Theorem 1.1 in this case, the current author was able to show that if f_{1}, \ldots, f_{r} are bounded measurable functions on the disk, all but possibly one of them are radial functions and $T_{1} \cdots T_{f_{r}}$ has finite rank then one of these functions is the zero function. See [5] for more detail.

To the best of the author's knowledge, Theorem 1.1 in high dimensions has been proved in at least two preprints. In [7], G. Rozenblum and N. Shirokov give a proof by induction on the dimension n. In the base case $(n=1)$, they use the above Luecking's result. In [1], B. Choe follows Luecking's scheme with modifications (to the setting of several variables) to prove Theorem 1.1 for all $n \geq 1$. In this note, we modify Choe's proof to obtain a refined version of Theorem 1.1. We then apply the refined theorem to solve the problem about finite-rank products of Toeplitz operators in all dimensions, when all but possibly one of the operators are (weighted) shifts. This result is Theorem 3.2, which is a generalization of the main result in [5].

2. A Refined Luecking's Theorem in High Dimensions

For any $1 \leq j \leq n$, let $\sigma_{j}: \mathbb{N} \times \mathbb{N}^{n-1} \longrightarrow \mathbb{N}^{n}$ be the map defined by the formula $\sigma_{j}\left(s,\left(r_{1}, \ldots, r_{n-1}\right)\right)=\left(r_{1}, \ldots, r_{j-1}, s, r_{j}, \ldots, r_{n-1}\right)$ for all $s \in \mathbb{N}$ and $\left(r_{1}, \ldots, r_{n-1}\right) \in \mathbb{N}^{n-1}$. If \mathcal{S} is a subset of \mathbb{N}^{n} and $1 \leq j \leq n$, we define

$$
\widetilde{\mathcal{S}}_{j}=\left\{\tilde{\mathbf{r}}=\left(r_{1}, \ldots, r_{n-1}\right) \in \mathbb{N}^{n-1}: \sum_{\substack{s \in \mathbb{N} \\ \sigma_{j}(s, \tilde{\mathbf{r}}) \in \mathcal{S}}} \frac{1}{s+1}=\infty\right\}
$$

The following definition is given in [4]. For completeness, we recall it here.
Definition 2.1. We say that \mathcal{S} has property (P) if one of the following statements holds.
(1) $\mathcal{S}=\emptyset$, or
(2) $\mathcal{S} \neq \emptyset, n=1$ and $\sum_{s \in \mathcal{S}} \frac{1}{s+1}<\infty$, or
(3) $\mathcal{S} \neq \emptyset, n \geq 2$ and for any $1 \leq j \leq n$, the set $\widetilde{\mathcal{S}}_{j}$ has property (P) as a subset of \mathbb{N}^{n-1}.
With the above definition, the following statements hold.
(1) If $\mathcal{S} \subset \mathbb{N}$ and \mathcal{S} does not have property (P), then $\sum_{s \in \mathcal{S}} \frac{1}{s+1}=\infty$. If $\mathcal{S} \subset \mathbb{N}^{n}$ with $n \geq 2$ and \mathcal{S} does not have property (P), then $\widetilde{\mathcal{S}}_{j}$ does not have property (P) as a subset of \mathbb{N}^{n-1} for some $1 \leq j \leq n$.
(2) If \mathcal{S}_{1} and \mathcal{S}_{2} are subsets of \mathbb{N}^{n} that both have property (P) then $\mathcal{S}_{1} \cup \mathcal{S}_{2}$ also has property (P).
(3) If $\mathcal{S} \subset \mathbb{N}^{n}$ has property (P) and $l \in \mathbb{Z}^{n}$ then $(\mathcal{S}+l) \cap \mathbb{N}^{n}$ also has property (P). Here, $\mathcal{S}+l=\{m+l: m \in \mathcal{S}\}$.
(4) If $\mathcal{S} \subset \mathbb{N}^{n}$ has property (P) then $\mathbb{N} \times \mathcal{S}$ also has property (P) as a subset of \mathbb{N}^{n+1}. This follows by induction on n.
(5) The set \mathbb{N}^{n} does not have property (P) for all $n \geq 1$. This together with (2) shows that if $\mathcal{S} \subset \mathbb{N}^{n}$ has property (P) then $\mathbb{N}^{n} \backslash \mathcal{S}$ does not have property (P).
(6) For any $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$ and $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$ in \mathbb{N}, we write $\mathbf{m} \succeq \mathbf{k}$ if $m_{j} \geq k_{j}$ for all $1 \leq j \leq n$ and write $\mathbf{m} \nsucceq \mathbf{k}$ if otherwise. Then for any fixed $\mathbf{k} \in \mathbb{N}^{n}$, the set $\mathcal{S}=\left\{\mathbf{m} \in \mathbb{N}^{n}: \mathbf{m} \nsucceq \mathbf{k}\right\}$ has property (P). This follows from (2), (4) and the fact that

$$
\mathcal{S} \subset \bigcup_{j=1}^{n} \mathbb{N} \times \cdots \times \mathbb{N} \times\left\{0, \ldots, k_{j}-1\right\} \times \mathbb{N} \times \cdots \times \mathbb{N}
$$

The following proposition shows that if the zero set of a holomorphic function (under certain additional assumptions) does not have property (P) then the function is identically zero. The proof is in Section 3 in [4.

Proposition 2.2 (Proposition 3.2 in (4). Let \mathbb{K} denote the right half of the complex plane. Let $F: \mathbb{K}^{n} \rightarrow \mathbb{C}$ be a holomorphic function. Suppose there exists a polynomial p such that $|F(\mathbf{z})| \leq p(|\mathbf{z}|)$ for all $\mathbf{z} \in \mathbb{K}^{n}$. Put $Z(F)=\left\{\mathbf{r} \in \mathbb{N}^{n}: F(\mathbf{r})=0\right\}$. If $Z(F)$ does not have property (P), then F is identically zero in \mathbb{K}^{n}.

We are now ready for the statement and proof of a refined version of Theorem 1.1.

Theorem 2.3. Suppose $\mathcal{S} \subset \mathbb{N}^{n}$ is a set that has property (P). Let \mathcal{N} be the linear subspace of \mathcal{P} spanned by the monomials $\left\{\mathbf{z}^{\mathbf{m}}: \mathbf{m} \in \mathbb{N}^{n} \backslash \mathcal{S}\right\}$. Let $L^{*}(\mathcal{N}, \mathbb{C})$ denote the space of all conjugate-linear functionals on \mathcal{N}. Suppose μ is a complex regular Borel measure on \mathbb{C}^{n} with compact support. Let $L_{\mu}: \mathcal{N} \longrightarrow L^{*}(\mathcal{N}, \mathbb{C})$ be the operator defined by $L_{\mu} f(g)=\int_{\mathbb{C}^{n}} f \bar{g} \mathrm{~d} \mu$ for $f, g \in \mathcal{N}$. If L_{μ} has finite rank, then $\tilde{\mu}$ is a linear combination of point masses, where $\mathrm{d} \tilde{\mu}(\mathbf{z})=\left|z_{1}\right| \cdots\left|z_{n}\right| \mathrm{d} \mu(\mathbf{z})$ for $\mathbf{z} \in \mathbb{C}^{n}$. As a consequence, if μ
is absolutely continuous with respect to the Lebesgue measure on \mathbb{C}^{n}, then μ is the zero measure.

Proof. Suppose L_{μ} has rank strictly less than N, where $N \geq 1$. Arguing as in pages 2 and 3 in [1], for any polynomials f_{1}, \ldots, f_{N} and g_{1}, \ldots, g_{N} in \mathcal{N}, we have

$$
\begin{equation*}
\int_{\mathbb{C}^{n \times N}}\left(\prod_{j=1}^{N} f_{j}\left(\mathbf{z}_{j}\right)\right) \operatorname{det}\left(\bar{g}_{i}\left(\mathbf{z}_{j}\right)\right) \mathrm{d} \mu^{N}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)=0 \tag{1}
\end{equation*}
$$

where μ^{N} is the product of N copies of μ on $\mathbb{C}^{n \times N}$.
Let $\mathbf{m}_{1}, \ldots, \mathbf{m}_{N}$ and $\mathbf{k}_{1}, \ldots, \mathbf{k}_{N}$ be multi-indices in \mathbb{N}^{n}. Let

$$
\begin{aligned}
L & =\left\{\mathbf{l} \in \mathbb{N}^{n}: \mathbf{l}+\mathbf{m}_{j} \notin \mathcal{S} \text { and } \mathbf{l}+\mathbf{k}_{j} \notin \mathcal{S} \text { for all } 1 \leq j \leq N\right\} \\
& =\mathbb{N}^{n} \backslash\left(\left(\bigcup_{j=1}^{N}\left(\mathcal{S}-\mathbf{m}_{j}\right)\right) \bigcup\left(\bigcup_{j=1}^{N}\left(\mathcal{S}-\mathbf{k}_{j}\right)\right)\right) .
\end{aligned}
$$

Since \mathcal{S} has property (P) we see that $\mathbb{N}^{n} \backslash L$ has property (P). This implies that L does not have property (P). For any $\mathbf{l} \in L$, the monomials $f_{j}(\mathbf{z})=$ $\mathbf{z}^{\mathbf{m}_{j}+\mathbf{1}}$ and $g_{j}(\mathbf{z})=\mathbf{z}^{\mathbf{k}_{j}+\mathbf{1}}$ are in \mathcal{N} for $j=1, \ldots, N$. Equation (1) then implies that

$$
\begin{aligned}
0 & =\int_{\mathbb{C}^{n \times N}}\left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}+\mathbf{l}}\right) \operatorname{det}\left(\left(\overline{\mathbf{z}}_{j}^{\mathbf{k}_{i}+\mathbf{l}}\right)\right) \mathrm{d} \mu^{N}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right) \\
& =\int_{\mathbb{C}^{n \times N}}\left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}}\right) \operatorname{det}\left(\left(\left(\mathbf{z}_{j}^{\mathbf{k}_{i}}\right)\right)\left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{1}} \overline{\mathbf{z}}_{j}^{\mathbf{l}}\right) \mathrm{d} \mu^{N}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)\right. \\
& =\int_{\mathbb{C}^{n \times N}}\left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}}\right) \operatorname{det}\left(\left(\left(\overline{\mathbf{z}}_{j}^{\mathbf{k}_{i}}\right)\right)\left(\prod_{j=1}^{N} \prod_{s=1}^{n}\left|z_{j, s}\right|^{2 l_{s}}\right) \mathrm{d} \mu^{N}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)\right. \\
& =\int_{\mathbb{C}^{n} \times N}\left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}}\right) \operatorname{det}\left(\left(\left(\overline{\mathbf{z}}_{j}^{\mathbf{k}_{i}}\right)\right)\left(\prod_{s=1}^{n}\left(\prod_{j=1}^{N}\left|z_{j, s}\right|\right)^{2 l_{s}}\right) \mathrm{d} \mu^{N}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right),\right.
\end{aligned}
$$

where $\mathbf{l}=\left(l_{1}, \ldots, l_{n}\right)$ and $\mathbf{z}_{j}=\left(z_{j, 1}, \ldots, z_{j, n}\right)$ for $1 \leq j \leq N$.
Suppose that μ is supported in the ball $\mathbb{B}(0, R)$ of radius R centered at 0 in \mathbb{C}^{n}. Then μ^{N} is supported in the product of N copies of $\mathbb{B}(0, R)$ in $\mathbb{C}^{n \times N}$. For any $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{C}^{n}$ with $\Re\left(\zeta_{1}\right), \ldots, \Re\left(\zeta_{n}\right)>0$, define

$$
\begin{aligned}
F(\zeta) & =\int_{\mathbb{C}^{n \times N}}\left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}}\right) \operatorname{det}\left(\left(\overline{\mathbf{z}}_{j}^{\mathbf{k}_{i}}\right)\right)\left(\prod_{s=1}^{n}\left(\prod_{j=1}^{N}\left|z_{j, s}\right| R^{-1}\right)^{2 \zeta_{s}}\right) \mathrm{d} \mu^{N}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right) \\
& =\int_{(\mathbb{B}(0, R))^{N}}\left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}}\right) \operatorname{det}\left(\left(\left(\overline{\mathbf{z}}_{j}^{\mathbf{k}_{i}}\right)\right)\left(\prod_{s=1}^{n}\left(\prod_{j=1}^{N}\left|z_{j, s}\right| R^{-1}\right)^{2 \zeta_{s}}\right) \mathrm{d} \mu^{N}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right) .\right.
\end{aligned}
$$

Then F is holomorphic and bounded on its defining domain and $F(\mathbf{l})=0$ for all \mathbf{l} in L. Since L does not have property (P), Proposition 2.2 implies that $F(\zeta)=0$ for all $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{C}^{n}$ with $\Re\left(\zeta_{1}\right), \ldots, \Re\left(\zeta_{n}\right)>0$. In particular, we have $F\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)=0$. This shows that

$$
\begin{aligned}
0 & =\int_{\mathbb{C}^{n \times N}}\left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}}\right) \operatorname{det}\left(\left(\mathbf{z}_{j}^{\mathbf{k}_{i}}\right)\right)\left(\prod_{s=1}^{n}\left(\prod_{j=1}^{N}\left|z_{j, s}\right|\right)\right) \mathrm{d} \mu^{N}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right) \\
& =\int_{\mathbb{C}^{n \times N}}\left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}}\right) \operatorname{det}\left(\left(\mathbf{z}_{j}^{\mathbf{k}_{j}}\right)\right) \mathrm{d} \tilde{\mu}^{N}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right),
\end{aligned}
$$

where $\tilde{\mu}^{N}$ is the product of N copies of $\tilde{\mu}$. Since $\mathbf{m}_{1}, \ldots, \mathbf{m}_{N}$ and $\mathbf{k}_{1}, \ldots, \mathbf{k}_{N}$ were arbitrary, by taking finite sums, we conclude that

$$
\begin{equation*}
\int_{\mathbb{C}^{n \times N}}\left(\prod_{j=1}^{N} f_{j}\left(\mathbf{z}_{j}\right)\right) \operatorname{det}\left(\bar{g}_{i}\left(\mathbf{z}_{j}\right)\right) \mathrm{d} \tilde{\mu}^{N}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)=0, \tag{2}
\end{equation*}
$$

where f_{1}, \ldots, f_{N} and g_{1}, \ldots, g_{N} are in \mathcal{P}. Now following Choe's proof on pages 3-6 in [1], we see that $\tilde{\mu}$ is supported in a set of less than N points.

Remark 2.4. Suppose $n=1$. Then $\tilde{\mu}$ is a linear combination of point masses implies that μ is also a linear combination of point masses.

Remark 2.5. Suppose $n \geq 2$. Let $\mathcal{S}=\left\{\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbf{N}^{n}\right.$: $\left.m_{1} \cdots m_{n}=0\right\}$. Then \mathcal{S} has property (P). Let $W=\left\{\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in\right.$ $\left.\mathbb{C}^{n}: z_{1} \cdots z_{n}=0\right\}$. If μ is any complex regular Borel measure supported on W then for any f, g in \mathcal{N} (recall that $\mathcal{N}=\operatorname{Span}\left\{e_{\mathbf{m}}: \mathbf{m} \in \mathbb{N}^{n} \backslash \mathcal{S}\right\}$), we have

$$
\int_{\mathbb{C}^{n}} f \bar{g} \mathrm{~d} \mu=\int_{W} f \bar{g} \mathrm{~d} \mu=0
$$

because f and g vanish on W. This shows that L_{μ} is the zero operator from \mathcal{N} into $L^{*}(\mathcal{N}, \mathbb{C})$. However, since W is an infinite set, μ may not be a inear combination of point masses.

3. Finite-Rank Toeplitz Products

In the first part of this section, we use Theorem 2.3 to show that under certain conditions on the bounded operators S_{1} and S_{2} on A_{α}^{2}, if $f \in L_{\alpha}^{2}$ so that $S_{2} T_{f} S_{1}$ is a finite-rank operator, then f must be zero almost everywhere on \mathbb{B}_{n}.

Theorem 3.1. Let S_{1}, S_{2} be two bounded operators on A_{α}^{2}. Suppose there is a set $\mathcal{S} \subset \mathbb{N}^{n}$ which has property (P) such that $\operatorname{ker}\left(S_{2}\right) \subset \overline{\mathcal{M}}$ and $\mathcal{N} \subset$ $\operatorname{ran}\left(S_{1}\right)$. Here \mathcal{M} (respectively, \mathcal{N}) is the linear subspace of A_{α}^{2} spanned by $\left\{\mathbf{z}^{\mathbf{m}}: \mathbf{m} \in \mathcal{S}\right\}$ (respectively, $\left\{\mathbf{z}^{\mathbf{m}}: \mathbf{m} \in \mathbb{N}^{n} \backslash \mathcal{S}\right\}$). Suppose $f \in L_{\alpha}^{2}$ so that the operator $S_{2} T_{f} S_{1}$ has finite rank, then f is the zero function.

Proof. Since $S_{2} T_{f} S_{1}$ has finite rank and $\mathcal{N} \subset S_{1}\left(A_{\alpha}^{2}\right)$, we see that $S_{2} T_{f}(\mathcal{N})$ is a finite-dimensional linear subspace of A_{α}^{2}. Let $\left\{u_{1}, \ldots, u_{N}\right\}$ be a basis for this space. Let $v_{j} \in A_{\alpha}^{2}$ such that $S_{2} v_{j}=u_{j}$ for $1 \leq j \leq N$. It then follows that $T_{f}(\mathcal{N})$ is contained in $\operatorname{Span}\left(\operatorname{ker}\left(S_{2}\right) \cup\left\{v_{1}, \ldots, v_{N}\right\}\right)$, which is a subspace of $\operatorname{Span}\left(\overline{\mathcal{M}} \cup\left\{v_{1}, \ldots, v_{N}\right\}\right)$. Let $P_{\overline{\mathcal{M}}}$ denote the orthogonal projection from A_{α}^{2} onto $\overline{\mathcal{M}}$. Replacing v_{j} by $v_{j}-P_{\overline{\mathcal{M}}} v_{j}$ if necessary, we may assume that $v_{j} \perp \mathcal{M}$ for $1 \leq j \leq N$. Using the Gram-Schmidt process if necessary, we may assume that $\left\{v_{1}, \ldots, v_{N}\right\}$ is an orthonormal set in A_{α}^{2} (we may have fewer vectors after using Gram-Schmidt process but let us still denote by N the total number of vectors).

For any p in \mathcal{N} we have

$$
T_{f} p=P_{\overline{\mathcal{M}}} T_{f} p+\sum_{j=1}^{N}\left\langle T_{f} p, v_{j}\right\rangle_{\alpha} v_{j}=P_{\overline{\mathcal{M}}} T_{f} p+\sum_{j=1}^{N}\left\langle f p, v_{j}\right\rangle_{\alpha} v_{j} .
$$

Now for any q in \mathcal{N}, since $q \perp \mathcal{M}$, we have

$$
\begin{aligned}
\int_{\mathbb{B}_{n}} f p \bar{q} \mathrm{~d} \nu_{\alpha} & =\left\langle T_{f} p, q\right\rangle_{\alpha} \\
& =\left\langle P_{\overline{\mathcal{M}}} T_{f} p, q\right\rangle_{\alpha}+\sum_{j=1}^{N}\left\langle f p, v_{j}\right\rangle_{\alpha}\left\langle v_{j}, q\right\rangle_{\alpha} \\
& =\sum_{j=1}^{N}\left\langle f p, v_{j}\right\rangle_{\alpha}\left\langle v_{j}, q\right\rangle_{\alpha} .
\end{aligned}
$$

Let $\mathrm{d} \mu=f \mathrm{~d} \nu_{\alpha}$. Then the map L_{μ} from \mathcal{N} into the space of all conjugatelinear functionals on \mathcal{N} defined by $L_{\mu} p(q)=\int_{\mathbb{B}_{n}} p \bar{q} \mathrm{~d} \mu=\int_{\mathbb{B}_{n}} p \bar{q} f \mathrm{~d} \nu_{\alpha}$ has finite rank. Theorem 2.3 then implies that μ is the zero measure. Thus f is zero almost everywhere on \mathbb{B}_{n}.

Suppose $\tilde{f} \in L^{\infty}$ such that

$$
\begin{equation*}
\tilde{f}\left(z_{1}, \ldots, z_{n}\right)=\tilde{f}\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right) \text { for almost all } \mathbf{z} \in \mathbb{B}_{n} \tag{3}
\end{equation*}
$$

Then for any \mathbf{m}, \mathbf{k} in \mathbb{N}^{n}, we have

$$
\begin{aligned}
\left\langle T_{\tilde{f}} e_{\mathbf{m}}, e_{\mathbf{k}}\right\rangle_{\alpha} & =\int_{\mathbb{B}_{n}} \tilde{f}(\mathbf{z}) e_{\mathbf{m}}(\mathbf{z}) \bar{e}_{\mathbf{k}}(\mathbf{z}) \mathrm{d} \nu_{\alpha}(\mathbf{z}) \\
& =\int_{\mathbb{B}_{n}} \tilde{f}\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right) e_{\mathbf{m}}(\mathbf{z}) \bar{e}_{\mathbf{k}}(\mathbf{z}) \mathrm{d} \nu_{\alpha}(\mathbf{z}) \\
& =C(\mathbf{m}, \mathbf{k}, n, \alpha) \int_{\mathbb{B}_{n}} \tilde{f}\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right) \mathbf{z}^{\mathbf{m}_{\overline{\mathbf{z}}}}{ }^{\mathbf{m}} \mathrm{d} \nu_{\alpha}(\mathbf{z})
\end{aligned}
$$

$$
= \begin{cases}0 & \text { if } \mathbf{m} \neq \mathbf{k} \\ C(\mathbf{m}, n, \alpha) \int_{\mathbb{B}_{n}} \tilde{f}\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right) \mathbf{z}^{\mathbf{m}} \overline{\mathbf{z}}^{\mathbf{m}} \mathrm{d} \nu_{\alpha}(\mathbf{z}) & \text { if } \mathbf{m}=\mathbf{k} .\end{cases}
$$

The last equality follows from the invariance of the measure ν_{α} under the action of the n-torus (see also Corollary 3.5 in [4] for more detail). This implies that $T_{\tilde{f}}$ is a diagonal operator with respect to the standard orthonormal basis of A_{α}^{2}. The eigenvalues of $T_{\tilde{f}}$ are given by

$$
\begin{equation*}
\omega_{\alpha}(\tilde{f}, \mathbf{m})=\left\langle T_{\tilde{f}} e_{\mathbf{m}}, e_{\mathbf{m}}\right\rangle_{\alpha}, \quad \mathbf{m} \in \mathbb{N}^{n} \tag{4}
\end{equation*}
$$

If the set $Z(\tilde{f})=\left\{\mathbf{m} \in \mathbb{N}^{n}: \omega_{\alpha}(\tilde{f}, \mathbf{m})=0\right\}$ does not have property (P) then by Lemma 3.3 in [5], it is all of \mathbb{N}^{n}. This implies that $T_{\tilde{f}}$ is the zero operator, hence \tilde{f} is the zero function on \mathbb{B}_{n}. Therefore, if \tilde{f} is not the zero function on \mathbb{B}_{n} then $Z(\tilde{f})$ has property (P).

Now suppose \mathbf{s}, \mathbf{t} are in \mathbb{N}^{n}. Let $f(\mathbf{z})=\mathbf{z}^{\mathbf{s}} \mathbf{z}^{\mathbf{t}} \tilde{f}(\mathbf{z})$ for $\mathbf{z} \in \mathbb{B}_{n}$. For \mathbf{m}, \mathbf{k} in \mathbb{N}^{n}, we have

$$
\begin{aligned}
\left\langle T_{f} e_{\mathbf{m}}, e_{\mathbf{k}}\right\rangle_{\alpha} & =C(\mathbf{m}, \mathbf{s}, \mathbf{k}, \mathbf{t}, n, \alpha)\left\langle\tilde{f} e_{\mathbf{m}+\mathbf{s}}, e_{\mathbf{k}+\mathbf{t}}\right\rangle_{\alpha} \\
& = \begin{cases}0 & \text { if } \mathbf{m}+\mathbf{s} \neq \mathbf{k}+\mathbf{t} \\
C(\mathbf{m}, \mathbf{s}, \mathbf{k}, \mathbf{t}, n, \alpha) \omega_{\alpha}(\tilde{f}, \mathbf{m}+\mathbf{s}) & \text { if } \mathbf{m}+\mathbf{s}=\mathbf{k}+\mathbf{t}\end{cases}
\end{aligned}
$$

This shows that

$$
T_{f} e_{\mathbf{m}}= \begin{cases}0 & \text { if } \mathbf{m} \nsucceq \mathbf{t}-\mathbf{s} \tag{5}\\ C(\mathbf{m}, \mathbf{s}, \mathbf{m}+\mathbf{s}-\mathbf{t}, \mathbf{t}, n, \alpha) \omega_{\alpha}(\tilde{f}, \mathbf{m}+\mathbf{s}) e_{\mathbf{m}+\mathbf{s}-\mathbf{t}} & \text { if } \mathbf{m} \succeq \mathbf{t}-\mathbf{s}\end{cases}
$$

Note that the constant $C(\mathbf{m}, \mathbf{s}, \mathbf{m}+\mathbf{s}-\mathbf{t}, \mathbf{t}, n, \alpha)$ is positive.
Now suppose $\tilde{f}_{1}, \ldots, \tilde{f}_{r}$ be functions in L^{∞} satisfying (3), none of which is the zero function. Let $\mathbf{s}_{1}, \ldots, \mathbf{s}_{r}$ and $\mathbf{t}_{1}, \ldots, \mathbf{t}_{r}$ be multi-indices in \mathbb{N}^{n}. For each $1 \leq j \leq r$, let $f_{j}(\mathbf{z})=\mathbf{z}^{\mathbf{s}_{j}} \overline{\mathbf{z}}^{\mathbf{t}_{j}} \tilde{f}_{j}(\mathbf{z})$ for $\mathbf{z} \in \mathbb{B}_{n}$. Let $S=T_{f_{r}} \cdots T_{f_{1}}$. For any multi-index $\mathbf{m} \succeq \sum_{j=1}^{r}\left(\mathbf{s}_{j}+\mathbf{t}_{j}\right)$, using (5), we see that there is a positive constant C depending on $\mathbf{m}, \mathbf{s}_{1}, \ldots, \mathbf{s}_{r}, \mathbf{t}_{1}, \ldots, \mathbf{t}_{r}, n$ and α so that

$$
\begin{equation*}
S e_{\mathbf{m}}=C \cdot\left(\prod_{j=1}^{r} \omega_{\alpha}\left(\tilde{f}_{j}, \mathbf{m}+\sum_{i=1}^{j-1}\left(\mathbf{s}_{i}-\mathbf{t}_{i}\right)+\mathbf{s}_{j}\right)\right) e_{\mathbf{m}+\sum_{j=1}^{r}\left(\mathbf{s}_{j}-\mathbf{t}_{j}\right) .} \tag{6}
\end{equation*}
$$

Define

$$
\begin{aligned}
\mathcal{J}= & \left\{\mathbf{m}: \mathbf{m} \nsucceq \sum_{j=1}^{r}\left(\mathbf{s}_{j}+\mathbf{t}_{j}\right)\right\} \\
& \bigcup\left\{\mathbf{m}: \prod_{j=1}^{r} \omega_{\alpha}\left(\tilde{f}_{j}, \mathbf{m}+\sum_{i=1}^{j-1}\left(\mathbf{s}_{i}-\mathbf{t}_{i}\right)+\mathbf{s}_{j}\right)=0\right\} \\
& =\left\{\mathbf{m}: \mathbf{m} \nsucceq \sum_{j=1}^{r}\left(\mathbf{s}_{j}+\mathbf{t}_{j}\right)\right\} \bigcup\left(\bigcup_{j=1}^{r}\left(Z\left(\tilde{f}_{j}\right)-\left(\sum_{i=1}^{j-1}\left(\mathbf{s}_{i}-\mathbf{t}_{i}\right)+\mathbf{s}_{j}\right)\right)\right)
\end{aligned}
$$

Since none of the functions f_{1}, \ldots, f_{r} is the zero function, the set \mathcal{J} has property (P). For $\mathbf{m} \in \mathbb{N}^{n} \backslash \mathcal{J}$, we see that $S e_{\mathbf{m}} \neq 0$ and $e_{\mathbf{m}+\sum_{j=1}^{r}\left(\mathbf{s}_{j}-\mathbf{t}_{j}\right)}$ is a multiple of $S e_{\mathbf{m}}$. Suppose $\varphi \in A_{\alpha}^{2}$ such that $S \varphi=0$. Then we have

$$
0=S \varphi=S\left(\sum_{\mathbf{m} \in \mathbb{N}^{n}}\left\langle\varphi, e_{\mathbf{m}}\right\rangle_{\alpha} e_{\mathbf{m}}\right)=\sum_{\mathbf{m} \in \mathbb{N}^{n}}\left\langle\varphi, e_{\mathbf{m}}\right\rangle_{\alpha} S e_{\mathbf{m}}
$$

So (6) implies that for any $\mathbf{m} \in \mathbb{N}^{n} \backslash \mathcal{J},\left\langle\varphi, e_{\mathbf{m}}\right\rangle_{\alpha}=0$. Therefore $\operatorname{ker}(S)$ is contained in the closure in A_{α}^{2} of the linear span of $\left\{e_{\mathbf{m}}: \mathbf{m} \in \mathcal{J}\right\}$. Now put

$$
\mathcal{I}=\left\{\mathbf{k} \in \mathbb{N}^{n}: \mathbf{k} \nsucceq \sum_{j=1}^{r}\left(\mathbf{s}_{j}-\mathbf{t}_{j}\right)\right\} \bigcup\left(\mathbb{N}^{n} \bigcap\left(\mathcal{J}+\sum_{j=1}^{r}\left(\mathbf{s}_{j}-\mathbf{t}_{j}\right)\right)\right)
$$

Then \mathcal{I} has property (P) and for any $\mathbf{k} \in \mathbb{N}^{n} \backslash \mathcal{I}, \mathbf{m}=\mathbf{k}-\sum_{j=1}^{r}\left(\mathbf{s}_{j}-\mathbf{t}_{j}\right)$ belongs to $\mathbb{N}^{n} \backslash \mathcal{J}$. It then follows that $e_{\mathbf{k}}=e_{\mathbf{m}+\sum_{j=1}^{r}\left(\mathbf{s}_{j}-\mathbf{t}_{j}\right)}$ is a multiple of $S e_{\mathbf{m}}$. So the linear span of $\left\{e_{\mathbf{k}}: \mathbf{k} \in \mathbb{N}^{n} \backslash \mathcal{I}\right\}$ is contained in the range of S.

We now prove a result about products of Toeplitz operators on A_{α}^{2}.
Theorem 3.2. Let r_{1} and r_{2} be two positive integers. Let $\tilde{f}_{1}, \ldots, \tilde{f}_{r_{1}+r_{2}}$ be functions in L^{∞} satisfying (3), none of which is the zero function. Let $\mathbf{s}_{1}, \ldots, \mathbf{s}_{r_{1}+r_{2}}$ and $\mathbf{t}_{1}, \ldots, \mathbf{t}_{r_{1}+r_{2}}$ be multi-indices in \mathbb{N}^{n}. For each $1 \leq j \leq$ $r_{1}+r_{2}$, let $f_{j}(\mathbf{z})=\mathbf{z}^{\mathbf{s}_{j}} \overline{\mathbf{z}}^{\mathbf{t}_{j}} \tilde{f}_{j}(\mathbf{z})$ for $\mathbf{z} \in \mathbb{B}_{n}$. If $f \in L_{\alpha}^{2}$ such that the operator $T_{f_{r_{1}+r_{2}}} \cdots T_{f_{r_{1}+1}} T_{f} T_{f_{r_{1}}} \cdots T_{f_{1}}$ (which is densely defined on A_{α}^{2}) has finite rank, then f is the zero function.

Proof. Let $S_{1}=T_{f_{r_{1}}} \cdots T_{f_{1}}$ and $S_{2}=T_{f_{r_{1}+r_{2}}} \cdots T_{f_{r_{1}+1}}$. From the discussion preceding the theorem, there are subsets \mathcal{J} and \mathcal{I} of \mathbb{N}^{n} that have property (P) such that $\operatorname{ker}\left(S_{2}\right)$ is contained in the closure in A_{α}^{2} of $\operatorname{Span}\left(\left\{e_{\mathbf{m}}: m \in\right.\right.$ $\mathcal{J}\})$ and $\operatorname{Span}\left(\left\{e_{\mathbf{k}}: \mathbf{k} \in \mathbb{N}^{n} \backslash \mathcal{I}\right\}\right)$ is a subspace of $S_{1}\left(A_{\alpha}^{2}\right)$. Let $\mathcal{S}=\mathcal{J} \cup$ \mathcal{I}. Then \mathcal{S} has property $(\mathrm{P}), \operatorname{ker}\left(S_{2}\right) \subset \overline{\mathcal{M}}$ and $\mathcal{N} \subset S_{1}\left(A_{\alpha}^{2}\right)$, where \mathcal{M} (respectively, \mathcal{N}) is the linear subspace of A_{α}^{2} spanned by $\left\{\mathbf{z}^{\mathbf{m}}: \mathbf{m} \in \mathcal{S}\right\}$ (respectively, $\left\{\mathbf{z}^{\mathbf{m}}: \mathbf{m} \in \mathbb{N}^{n} \backslash \mathcal{S}\right\}$). If $f \in L_{\alpha}^{2}$ such that $S_{2} T_{f} S_{1}$ has finite rank, then Theorem 3.1 implies that f is the zero function.

Remark 3.3. Suppose $n=1$. The functions f_{j} 's in the hypothesis of Theorem 3.2 are called quasihomogeneous functions. Each $T_{f_{j}}$ is a weighted forward or backward shift. It was showed in [2] (Theorem 2) that if the product
of finitely many Toeplitz operators whose symbols are bounded quasihomogeneous functions is of finite rank then one of the functions must be zero. This result is a special case of our Theorem 3.2 above.

In [3], K. Guo, S. Sun and D. Zheng showed that if f and g are bounded harmonic functions on the unit disk and $T_{f} T_{g}$ has finite rank then either $f=0$ or $g=0$. However, for arbitrary bounded measurable functions f and g, it is still not known whether $T_{f} T_{g}=0$ implies one of these functions must be the zero function.

References

[1] Boo Rim Choe, On higher dimensional Luecking's theorem, preprint, available at http://math.korea.ac.kr/~choebr/recent.html.
[2] Željko Čučković and Issam Louhichi, Finite rank commutators and semicommutators of quasihomogeneous toeplitz operators, Complex Anal. Oper. Theory 2 (2008), no. 3, 429-439.
[3] Kunyu Guo, Shunhua Sun, and Dechao Zheng, Finite rank commutators and semicommutators of Toeplitz operators with harmonic symbols, Illinois J. Math. 51 (2007), no. 2, 583-596 (electronic). MR 2342676
[4] Trieu Le, The commutants of certain Toeplitz operators on weighted Bergman spaces, preprint, available at http://www.math.uwaterloo.ca/~t29le/Papers.htm.
[5] _ A refined Luecking's theorem and finite rank products of Toeplitz operators, preprint, available at http://www.math.uwaterloo.ca/~t29le/Papers.htm.
[6] Daniel H. Luecking, Finite rank Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1717-1723.
[7] Grigori Rozenblum and Nikolay Shirokov, Finite rank Bergman-Toeplitz and Bargmann-Toeplitz operators in many dimensions, preprint, available at http://front.math.ucdavis.edu/0802.0192.
[8] Kehe Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005. MR 2115155 (2006d:46035)

Trieu Le, Department of Pure Mathematics, University of Waterloo, 200
University Avenue West, Waterloo, Ontario, Canada N2L 3G1
E-mail address: t291e@math.uwaterloo.ca

[^0]: 2000 Mathematics Subject Classification. Primary 47B35.
 Key words and phrases. Toeplitz operator, weighted Bergman space, finite-rank product.

