
FINITE-RANK PRODUCTS OF TOEPLITZ OPERATORS
IN SEVERAL COMPLEX VARIABLES

TRIEU LE

Abstract. For any α > −1, let A2
α be the weighted Bergman space on

the unit ball corresponding to the weight (1−|z|2)α. We show that if all
except possibly one of the Toeplitz operators Tf1 , . . . , Tfr are diagonal
with respect to the standard orthonormal basis of A2

α and Tf1 · · ·Tfr

has finite rank then one of the functions f1, . . . , fr must be the zero
function.

1. Introduction

As usual, let Bn denote the open unit ball in Cn. Let ν denote the
Lebesgue measure on Bn normalized so that ν(Bn) = 1. Fix a real number
α > −1. The weighted Lebesgue measure να on Bn is defined by dνα(z) =
cα(1 − |z|2)αdν(z), where cα is a normalizing constant so that να(Bn) = 1.

A direct computation shows that cα =
Γ(n + α + 1)

Γ(n + 1)Γ(α + 1)
. Let L2

α denote

L2(Bn,dνα) and L∞ denote L∞(Bn,dν), which is the same as L∞(Bn,dνα).
We denote the inner product in L2

α by 〈·, ·〉α and the corresponding norm
by ‖ · ‖2,α.

The weighted Bergman space A2
α consists of all functions in L2

α which are
holomorphic on Bn. It is well-known that A2

α is a closed subspace of L2
α.

For any multi-index m = (m1, . . . ,mn) ∈ Nn (here N denotes the set
of all non-negative integers), we write |m| = m1 + · · · + mn and m! =
m1! · · ·mn!. For any z = (z1, . . . , zn) ∈ Cn, we write zm = zm1

1 · · · zmn
n and

z̄m = z̄m1
1 · · · z̄mn

n . The standard orthonormal basis for A2
α is {em : m ∈ Nn},

where

em(z) =
[Γ(n + |m|+ α + 1)

m! Γ(n + α + 1)

]1/2
zm, m ∈ Nn, z ∈ Bn.

For a more detailed discussion of A2
α, see Chapter 2 in [8].

Since A2
α is a closed subspace of the Hilbert space L2

α, there is an orthog-
onal projection Pα from L2

α onto A2
α. For any function f ∈ L2

α the Toeplitz
operator with symbol f is denoted by Tf , which is densely defined on A2

α

by Tfϕ = Pα(fϕ) for bounded holomorphic functions ϕ on Bn. If f is a
bounded function then Tf is a bounded operator on A2

α with ‖Tf‖ ≤ ‖f‖∞
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and (Tf )∗ = Tf̄ . However, there are unbounded functions f that give rise
to bounded operators Tf .

Let P be the space of holomorphic polynomials in the variable z =
(z1, . . . , zn) in Cn. For any f ∈ L2

α and holomorphic polynomials p, q ∈ P
we have 〈Tfp, q〉α =

∫
Bn

pq̄fdνα. This shows that Tf can be viewed as an
operator from P into the space L∗(P, C) of conjugate-linear functionals on
P. More generally, for any compactly supported regular Borel measure µ
on Cn, we define Lµ : P −→ L∗(P, C) by the formula Lµp(q) =

∫
Cn pq̄dµ,

for p, q ∈ P. For f ∈ L2
α if we let dµ = fdνα then Tf = Lµ on P. It

follows from Stone-Weierstrass’s Theorem that if Lµ = 0 then µ = 0. It is
also immediate that if µ is a linear combination of point masses then Lµ

has finite rank. That the converse is also true is the content of the following
theorem, which had been an open conjecture for about twenty years. See
[1, 6, 7].

Theorem 1.1. Lµ has finite rank if and only if µ is a (finite) linear com-
bination of point masses.

Theorem 1.1 for the case n = 1 was proved by D. Luecking in [6]. Using
a refined version of Theorem 1.1 in this case, the current author was able
to show that if f1, . . . , fr are bounded measurable functions on the disk, all
but possibly one of them are radial functions and T1 · · ·Tfr has finite rank
then one of these functions is the zero function. See [5] for more detail.

To the best of the author’s knowledge, Theorem 1.1 in high dimensions has
been proved in at least two preprints. In [7], G. Rozenblum and N. Shirokov
give a proof by induction on the dimension n. In the base case (n = 1), they
use the above Luecking’s result. In [1], B. Choe follows Luecking’s scheme
with modifications (to the setting of several variables) to prove Theorem
1.1 for all n ≥ 1. In this note, we modify Choe’s proof to obtain a refined
version of Theorem 1.1. We then apply the refined theorem to solve the
problem about finite-rank products of Toeplitz operators in all dimensions,
when all but possibly one of the operators are (weighted) shifts. This result
is Theorem 3.2, which is a generalization of the main result in [5].

2. A Refined Luecking’s Theorem in High Dimensions

For any 1 ≤ j ≤ n, let σj : N × Nn−1 −→ Nn be the map defined by
the formula σj(s, (r1, . . . , rn−1)) = (r1, . . . , rj−1, s, rj , . . . , rn−1) for all s ∈ N
and (r1, . . . , rn−1) ∈ Nn−1. If S is a subset of Nn and 1 ≤ j ≤ n, we define

S̃j =
{
r̃ = (r1, . . . , rn−1) ∈ Nn−1 :

∑
s∈N

σj(s,r̃)∈S

1
s + 1

= ∞
}

.

The following definition is given in [4]. For completeness, we recall it here.

Definition 2.1. We say that S has property (P) if one of the following
statements holds.
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(1) S = ∅, or

(2) S 6= ∅, n = 1 and
∑
s∈S

1
s + 1

< ∞, or

(3) S 6= ∅, n ≥ 2 and for any 1 ≤ j ≤ n, the set S̃j has property (P) as
a subset of Nn−1.

With the above definition, the following statements hold.
(1) If S ⊂ N and S does not have property (P), then

∑
s∈S

1
s+1 = ∞. If

S ⊂ Nn with n ≥ 2 and S does not have property (P), then S̃j does
not have property (P) as a subset of Nn−1 for some 1 ≤ j ≤ n.

(2) If S1 and S2 are subsets of Nn that both have property (P) then
S1 ∪ S2 also has property (P).

(3) If S ⊂ Nn has property (P) and l ∈ Zn then (S + l) ∩ Nn also has
property (P). Here, S + l = {m + l : m ∈ S}.

(4) If S ⊂ Nn has property (P) then N × S also has property (P) as a
subset of Nn+1. This follows by induction on n.

(5) The set Nn does not have property (P) for all n ≥ 1. This together
with (2) shows that if S ⊂ Nn has property (P) then Nn\S does not
have property (P).

(6) For any m = (m1, . . . ,mn) and k = (k1, . . . , kn) in N, we write
m � k if mj ≥ kj for all 1 ≤ j ≤ n and write m � k if otherwise.
Then for any fixed k ∈ Nn, the set S = {m ∈ Nn : m � k} has
property (P). This follows from (2), (4) and the fact that

S ⊂
n⋃

j=1

N× · · · × N× {0, . . . , kj − 1} × N× · · · × N.

The following proposition shows that if the zero set of a holomorphic
function (under certain additional assumptions) does not have property (P)
then the function is identically zero. The proof is in Section 3 in [4].

Proposition 2.2 (Proposition 3.2 in [4]). Let K denote the right half of
the complex plane. Let F : Kn → C be a holomorphic function. Suppose
there exists a polynomial p such that |F (z)| ≤ p(|z|) for all z ∈ Kn. Put
Z(F ) = {r ∈ Nn : F (r) = 0}. If Z(F ) does not have property (P), then F
is identically zero in Kn.

We are now ready for the statement and proof of a refined version of
Theorem 1.1.

Theorem 2.3. Suppose S ⊂ Nn is a set that has property (P). Let N be
the linear subspace of P spanned by the monomials {zm : m ∈ Nn\S}. Let
L∗(N , C) denote the space of all conjugate-linear functionals on N . Suppose
µ is a complex regular Borel measure on Cn with compact support. Let
Lµ : N −→ L∗(N , C) be the operator defined by Lµf(g) =

∫
Cn fḡdµ for

f, g ∈ N . If Lµ has finite rank, then µ̃ is a linear combination of point
masses, where dµ̃(z) = |z1| · · · |zn|dµ(z) for z ∈ Cn. As a consequence, if µ
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is absolutely continuous with respect to the Lebesgue measure on Cn, then µ
is the zero measure.

Proof. Suppose Lµ has rank strictly less than N , where N ≥ 1. Arguing as
in pages 2 and 3 in [1], for any polynomials f1, . . . , fN and g1, . . . , gN in N ,
we have ∫

Cn×N

( N∏
j=1

fj(zj)
)
det(ḡi(zj))dµN (z1, . . . , zN ) = 0, (1)

where µN is the product of N copies of µ on Cn×N .
Let m1, . . . ,mN and k1, . . . ,kN be multi-indices in Nn. Let

L = {l ∈ Nn : l + mj /∈ S and l + kj /∈ S for all 1 ≤ j ≤ N}

= Nn\
(
(

N⋃
j=1

(S −mj))
⋃

(
N⋃

j=1

(S − kj))
)
.

Since S has property (P) we see that Nn\L has property (P). This implies
that L does not have property (P). For any l ∈ L, the monomials fj(z) =
zmj+l and gj(z) = zkj+l are in N for j = 1, . . . , N . Equation (1) then
implies that

0 =
∫

Cn×N

( N∏
j=1

zmj+l
j

)
det((z̄ki+l

j ))dµN (z1, . . . , zN )

=
∫

Cn×N

( N∏
j=1

zmj

j

)
det((z̄ki

j ))
( N∏

j=1

zl
j z̄

l
j

)
dµN (z1, . . . , zN )

=
∫

Cn×N

( N∏
j=1

zmj

j

)
det((z̄ki

j ))
( N∏

j=1

n∏
s=1

|zj,s|2ls
)
dµN (z1, . . . , zN )

=
∫

Cn×N

( N∏
j=1

zmj

j

)
det((z̄ki

j ))
( n∏

s=1

(
N∏

j=1

|zj,s|)2ls
)
dµN (z1, . . . , zN ),

where l = (l1, . . . , ln) and zj = (zj,1, . . . , zj,n) for 1 ≤ j ≤ N .
Suppose that µ is supported in the ball B(0, R) of radius R centered at 0

in Cn. Then µN is supported in the product of N copies of B(0, R) in Cn×N .
For any ζ = (ζ1, . . . , ζn) ∈ Cn with <(ζ1), . . . ,<(ζn) > 0, define

F (ζ) =
∫

Cn×N

( N∏
j=1

zmj

j

)
det((z̄ki

j ))
( n∏

s=1

(
N∏

j=1

|zj,s|R−1)2ζs
)
dµN (z1, . . . , zN )

=
∫

(B(0,R))N

( N∏
j=1

zmj

j

)
det((z̄ki

j ))
( n∏

s=1

(
N∏

j=1

|zj,s|R−1)2ζs
)
dµN (z1, . . . , zN ).
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Then F is holomorphic and bounded on its defining domain and F (l) = 0
for all l in L. Since L does not have property (P), Proposition 2.2 implies
that F (ζ) = 0 for all ζ = (ζ1, . . . , ζn) ∈ Cn with <(ζ1), . . . ,<(ζn) > 0. In
particular, we have F (1

2 , . . . , 1
2) = 0. This shows that

0 =
∫

Cn×N

( N∏
j=1

zmj

j

)
det((z̄ki

j ))
( n∏

s=1

(
N∏

j=1

|zj,s|)
)
dµN (z1, . . . , zN )

=
∫

Cn×N

( N∏
j=1

zmj

j

)
det((z̄ki

j ))dµ̃N (z1, . . . , zN ),

where µ̃N is the product of N copies of µ̃. Since m1, . . . ,mN and k1, . . . ,kN

were arbitrary, by taking finite sums, we conclude that∫
Cn×N

( N∏
j=1

fj(zj)
)
det(ḡi(zj))dµ̃N (z1, . . . , zN ) = 0, (2)

where f1, . . . , fN and g1, . . . , gN are in P. Now following Choe’s proof on
pages 3–6 in [1], we see that µ̃ is supported in a set of less than N points. �

Remark 2.4. Suppose n = 1. Then µ̃ is a linear combination of point
masses implies that µ is also a linear combination of point masses.

Remark 2.5. Suppose n ≥ 2. Let S = {m = (m1, . . . ,mn) ∈ Nn :
m1 · · ·mn = 0}. Then S has property (P). Let W = {z = (z1, . . . , zn) ∈
Cn : z1 · · · zn = 0}. If µ is any complex regular Borel measure supported on
W then for any f, g in N (recall that N = Span{em : m ∈ Nn\S}), we have∫

Cn

fḡdµ =
∫
W

fḡdµ = 0,

because f and g vanish on W . This shows that Lµ is the zero operator from
N into L∗(N , C). However, since W is an infinite set, µ may not be a inear
combination of point masses.

3. Finite-rank Toeplitz Products

In the first part of this section, we use Theorem 2.3 to show that under
certain conditions on the bounded operators S1 and S2 on A2

α, if f ∈ L2
α so

that S2TfS1 is a finite-rank operator, then f must be zero almost everywhere
on Bn.

Theorem 3.1. Let S1, S2 be two bounded operators on A2
α. Suppose there

is a set S ⊂ Nn which has property (P) such that ker(S2) ⊂ M̄ and N ⊂
ran(S1). Here M (respectively, N ) is the linear subspace of A2

α spanned by
{zm : m ∈ S} (respectively, {zm : m ∈ Nn\S}). Suppose f ∈ L2

α so that the
operator S2TfS1 has finite rank, then f is the zero function.
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Proof. Since S2TfS1 has finite rank and N ⊂ S1(A2
α), we see that S2Tf (N )

is a finite-dimensional linear subspace of A2
α. Let {u1, . . . , uN} be a basis for

this space. Let vj ∈ A2
α such that S2vj = uj for 1 ≤ j ≤ N . It then follows

that Tf (N ) is contained in Span(ker(S2)∪{v1, . . . , vN}), which is a subspace
of Span(M̄ ∪ {v1, . . . , vN}). Let PM̄ denote the orthogonal projection from
A2

α onto M̄. Replacing vj by vj − PM̄vj if necessary, we may assume that
vj ⊥ M for 1 ≤ j ≤ N . Using the Gram-Schmidt process if necessary, we
may assume that {v1, . . . , vN} is an orthonormal set in A2

α (we may have
fewer vectors after using Gram-Schmidt process but let us still denote by N
the total number of vectors).

For any p in N we have

Tfp = PM̄Tfp +
N∑

j=1

〈Tfp, vj〉αvj = PM̄Tfp +
N∑

j=1

〈fp, vj〉αvj .

Now for any q in N , since q ⊥M, we have∫
Bn

fpq̄dνα = 〈Tfp, q〉α

= 〈PM̄Tfp, q〉α +
N∑

j=1

〈fp, vj〉α〈vj , q〉α

=
N∑

j=1

〈fp, vj〉α〈vj , q〉α.

Let dµ = fdνα. Then the map Lµ from N into the space of all conjugate-
linear functionals on N defined by Lµp(q) =

∫
Bn

pq̄dµ =
∫

Bn
pq̄fdνα has

finite rank. Theorem 2.3 then implies that µ is the zero measure. Thus f is
zero almost everywhere on Bn. �

Suppose f̃ ∈ L∞ such that

f̃(z1, . . . , zn) = f̃(|z1|, . . . , |zn|) for almost all z ∈ Bn. (3)

Then for any m,k in Nn, we have

〈Tf̃em, ek〉α =
∫
Bn

f̃(z)em(z)ēk(z)dνα(z)

=
∫
Bn

f̃(|z1|, . . . , |zn|)em(z)ēk(z)dνα(z)

= C(m,k, n, α)
∫
Bn

f̃(|z1|, . . . , |zn|)zmz̄mdνα(z)
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=


0 if m 6= k,

C(m, n, α)
∫
Bn

f̃(|z1|, . . . , |zn|)zmz̄mdνα(z) if m = k.

The last equality follows from the invariance of the measure να under the
action of the n-torus (see also Corollary 3.5 in [4] for more detail). This im-
plies that Tf̃ is a diagonal operator with respect to the standard orthonormal
basis of A2

α. The eigenvalues of Tf̃ are given by

ωα(f̃ ,m) = 〈Tf̃em, em〉α, m ∈ Nn. (4)

If the set Z(f̃) = {m ∈ Nn : ωα(f̃ ,m) = 0} does not have property (P)
then by Lemma 3.3 in [5], it is all of Nn. This implies that Tf̃ is the zero
operator, hence f̃ is the zero function on Bn. Therefore, if f̃ is not the zero
function on Bn then Z(f̃) has property (P).

Now suppose s, t are in Nn. Let f(z) = zsz̄tf̃(z) for z ∈ Bn. For m,k in
Nn, we have

〈Tfem, ek〉α = C(m, s,k, t, n, α)〈f̃ em+s, ek+t〉α

=

{
0 if m + s 6= k + t,
C(m, s,k, t, n, α)ωα(f̃ ,m + s) if m + s = k + t.

This shows that

Tfem =

{
0 if m � t− s,
C(m, s,m + s− t, t, n, α)ωα(f̃ ,m + s)em+s−t if m � t− s.

(5)
Note that the constant C(m, s,m + s− t, t, n, α) is positive.

Now suppose f̃1, . . . , f̃r be functions in L∞ satisfying (3), none of which
is the zero function. Let s1, . . . , sr and t1, . . . , tr be multi-indices in Nn. For
each 1 ≤ j ≤ r, let fj(z) = zsj z̄tj f̃j(z) for z ∈ Bn. Let S = Tfr · · ·Tf1 . For

any multi-index m �
r∑

j=1
(sj + tj), using (5), we see that there is a positive

constant C depending on m, s1, . . . , sr, t1, . . . , tr, n and α so that

Sem = C ·
( r∏

j=1

ωα

(
f̃j ,m +

j−1∑
i=1

(si − ti) + sj

))
em+

Pr
j=1(sj−tj). (6)
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Define

J =
{
m : m �

r∑
j=1

(sj + tj)
}

⋃ {
m :

r∏
j=1

ωα

(
f̃j ,m +

j−1∑
i=1

(si − ti) + sj

)
= 0

}

=
{
m : m �

r∑
j=1

(sj + tj)
}⋃ ( r⋃

j=1

(
Z(f̃j)− (

j−1∑
i=1

(si − ti) + sj)
))

.

Since none of the functions f1, . . . , fr is the zero function, the set J has
property (P). For m ∈ Nn\J , we see that Sem 6= 0 and em+

Pr
j=1(sj−tj) is a

multiple of Sem. Suppose ϕ ∈ A2
α such that Sϕ = 0. Then we have

0 = Sϕ = S
( ∑

m∈Nn

〈ϕ, em〉αem

)
=

∑
m∈Nn

〈ϕ, em〉αSem.

So (6) implies that for any m ∈ Nn\J , 〈ϕ, em〉α = 0. Therefore ker(S) is
contained in the closure in A2

α of the linear span of {em : m ∈ J }. Now put

I =
{
k ∈ Nn : k �

r∑
j=1

(sj − tj)
}⋃ (

Nn
⋂ (

J +
r∑

j=1

(sj − tj)
))

.

Then I has property (P) and for any k ∈ Nn\I, m = k −
∑r

j=1(sj − tj)
belongs to Nn\J . It then follows that ek = em+

Pr
j=1(sj−tj) is a multiple of

Sem. So the linear span of {ek : k ∈ Nn\I} is contained in the range of S.
We now prove a result about products of Toeplitz operators on A2

α.

Theorem 3.2. Let r1 and r2 be two positive integers. Let f̃1, . . . , f̃r1+r2

be functions in L∞ satisfying (3), none of which is the zero function. Let
s1, . . . , sr1+r2 and t1, . . . , tr1+r2 be multi-indices in Nn. For each 1 ≤ j ≤
r1 + r2, let fj(z) = zsj z̄tj f̃j(z) for z ∈ Bn. If f ∈ L2

α such that the operator
Tfr1+r2

· · ·Tfr1+1TfTfr1
· · ·Tf1 (which is densely defined on A2

α) has finite
rank, then f is the zero function.

Proof. Let S1 = Tfr1
· · ·Tf1 and S2 = Tfr1+r2

· · ·Tfr1+1 . From the discussion
preceding the theorem, there are subsets J and I of Nn that have property
(P) such that ker(S2) is contained in the closure in A2

α of Span({em : m ∈
J }) and Span({ek : k ∈ Nn\I}) is a subspace of S1(A2

α). Let S = J ∪
I. Then S has property (P), ker(S2) ⊂ M̄ and N ⊂ S1(A2

α), where M
(respectively, N ) is the linear subspace of A2

α spanned by {zm : m ∈ S}
(respectively, {zm : m ∈ Nn\S}). If f ∈ L2

α such that S2TfS1 has finite
rank, then Theorem 3.1 implies that f is the zero function. �

Remark 3.3. Suppose n = 1. The functions fj’s in the hypothesis of Theo-
rem 3.2 are called quasihomogeneous functions. Each Tfj

is a weighted for-
ward or backward shift. It was showed in [2] (Theorem 2) that if the product
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of finitely many Toeplitz operators whose symbols are bounded quasihomo-
geneous functions is of finite rank then one of the functions must be zero.
This result is a special case of our Theorem 3.2 above.

In [3], K. Guo, S. Sun and D. Zheng showed that if f and g are bounded
harmonic functions on the unit disk and TfTg has finite rank then either
f = 0 or g = 0. However, for arbitrary bounded measurable functions f and
g, it is still not known whether TfTg = 0 implies one of these functions must
be the zero function.
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