FINITE-RANK PRODUCTS OF TOEPLITZ OPERATORS IN SEVERAL COMPLEX VARIABLES

TRIEU LE

ABSTRACT. For any $\alpha > -1$, let A_{α}^2 be the weighted Bergman space on the unit ball corresponding to the weight $(1-|\mathbf{z}|^2)^{\alpha}$. We show that if all except possibly one of the Toeplitz operators T_{f_1}, \ldots, T_{f_r} are diagonal with respect to the standard orthonormal basis of A_{α}^2 and $T_{f_1} \cdots T_{f_r}$ has finite rank then one of the functions f_1, \ldots, f_r must be the zero function.

1. INTRODUCTION

As usual, let \mathbb{B}_n denote the open unit ball in \mathbb{C}^n . Let ν denote the Lebesgue measure on \mathbb{B}_n normalized so that $\nu(\mathbb{B}_n) = 1$. Fix a real number $\alpha > -1$. The weighted Lebesgue measure ν_{α} on \mathbb{B}_n is defined by $d\nu_{\alpha}(\mathbf{z}) =$ $c_{\alpha}(1-|\mathbf{z}|^2)^{\alpha} d\nu(\mathbf{z})$, where c_{α} is a normalizing constant so that $\nu_{\alpha}(\mathbb{B}_n) = 1$. A direct computation shows that $c_{\alpha} = \frac{\Gamma(n+\alpha+1)}{\Gamma(n+1)\Gamma(\alpha+1)}$. Let L^2_{α} denote $L^2(\mathbb{B}_n, \mathrm{d}\nu_\alpha)$ and L^∞ denote $L^\infty(\mathbb{B}_n, \mathrm{d}\nu)$, which is the same as $L^\infty(\mathbb{B}_n, \mathrm{d}\nu_\alpha)$. We denote the inner product in L^2_{α} by $\langle \cdot, \cdot \rangle_{\alpha}$ and the corresponding norm by $\|\cdot\|_{2,\alpha}$.

The weighted Bergman space A^2_{α} consists of all functions in L^2_{α} which are holomorphic on \mathbb{B}_n . It is well-known that A^2_{α} is a closed subspace of L^2_{α} .

For any multi-index $\mathbf{m} = (m_1, \ldots, m_n) \in \mathbb{N}^n$ (here \mathbb{N} denotes the set of all non-negative integers), we write $|\mathbf{m}| = m_1 + \cdots + m_n$ and $\mathbf{m}! =$ $m_1! \cdots m_n!$. For any $\mathbf{z} = (z_1, \dots, z_n) \in \mathbb{C}^n$, we write $\mathbf{z}^{\mathbf{m}} = z_1^{m_1} \cdots z_n^{m_n}$ and $\bar{\mathbf{z}}^{\mathbf{m}} = \bar{z}_1^{m_1} \cdots \bar{z}_n^{m_n}$. The standard orthonormal basis for A_{α}^2 is $\{e_{\mathbf{m}} : \mathbf{m} \in \mathbb{N}^n\}$, where

$$e_{\mathbf{m}}(\mathbf{z}) = \left[\frac{\Gamma(n+|\mathbf{m}|+\alpha+1)}{\mathbf{m}! \ \Gamma(n+\alpha+1)}\right]^{1/2} \mathbf{z}^{\mathbf{m}}, \ \mathbf{m} \in \mathbb{N}^{n}, \mathbf{z} \in \mathbb{B}_{n}.$$

For a more detailed discussion of A_{α}^2 , see Chapter 2 in [8]. Since A_{α}^2 is a closed subspace of the Hilbert space L_{α}^2 , there is an orthog-onal projection P_{α} from L_{α}^2 onto A_{α}^2 . For any function $f \in L_{\alpha}^2$ the Toeplitz operator with symbol f is denoted by T_f , which is densely defined on A^2_{α} by $T_f \varphi = P_\alpha(f\varphi)$ for bounded holomorphic functions φ on \mathbb{B}_n . If f is a bounded function then T_f is a bounded operator on A^2_{α} with $||T_f|| \leq ||f||_{\infty}$

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B35.

Key words and phrases. Toeplitz operator, weighted Bergman space, finite-rank product.

and $(T_f)^* = T_{\bar{f}}$. However, there are unbounded functions f that give rise to bounded operators T_f .

Let \mathcal{P} be the space of holomorphic polynomials in the variable $\mathbf{z} = (z_1, \ldots, z_n)$ in \mathbb{C}^n . For any $f \in L^2_{\alpha}$ and holomorphic polynomials $p, q \in \mathcal{P}$ we have $\langle T_f p, q \rangle_{\alpha} = \int_{\mathbb{B}_n} p\bar{q}f d\nu_{\alpha}$. This shows that T_f can be viewed as an operator from \mathcal{P} into the space $L^*(\mathcal{P}, \mathbb{C})$ of conjugate-linear functionals on \mathcal{P} . More generally, for any compactly supported regular Borel measure μ on \mathbb{C}^n , we define $L_{\mu} : \mathcal{P} \longrightarrow L^*(\mathcal{P}, \mathbb{C})$ by the formula $L_{\mu}p(q) = \int_{\mathbb{C}^n} p\bar{q}d\mu$, for $p, q \in \mathcal{P}$. For $f \in L^2_{\alpha}$ if we let $d\mu = f d\nu_{\alpha}$ then $T_f = L_{\mu}$ on \mathcal{P} . It follows from Stone-Weierstrass's Theorem that if $L_{\mu} = 0$ then $\mu = 0$. It is also immediate that if μ is a linear combination of point masses then L_{μ} has finite rank. That the converse is also true is the content of the following theorem, which had been an open conjecture for about twenty years. See [1, 6, 7].

Theorem 1.1. L_{μ} has finite rank if and only if μ is a (finite) linear combination of point masses.

Theorem 1.1 for the case n = 1 was proved by D. Luecking in [6]. Using a refined version of Theorem 1.1 in this case, the current author was able to show that if f_1, \ldots, f_r are bounded measurable functions on the disk, all but possibly one of them are radial functions and $T_1 \cdots T_{f_r}$ has finite rank then one of these functions is the zero function. See [5] for more detail.

To the best of the author's knowledge, Theorem 1.1 in high dimensions has been proved in at least two preprints. In [7], G. Rozenblum and N. Shirokov give a proof by induction on the dimension n. In the base case (n = 1), they use the above Luecking's result. In [1], B. Choe follows Luecking's scheme with modifications (to the setting of several variables) to prove Theorem 1.1 for all $n \ge 1$. In this note, we modify Choe's proof to obtain a refined version of Theorem 1.1. We then apply the refined theorem to solve the problem about finite-rank products of Toeplitz operators in all dimensions, when all but possibly one of the operators are (weighted) shifts. This result is Theorem 3.2, which is a generalization of the main result in [5].

2. A Refined Luecking's Theorem in High Dimensions

For any $1 \leq j \leq n$, let $\sigma_j : \mathbb{N} \times \mathbb{N}^{n-1} \longrightarrow \mathbb{N}^n$ be the map defined by the formula $\sigma_j(s, (r_1, \ldots, r_{n-1})) = (r_1, \ldots, r_{j-1}, s, r_j, \ldots, r_{n-1})$ for all $s \in \mathbb{N}$ and $(r_1, \ldots, r_{n-1}) \in \mathbb{N}^{n-1}$. If \mathcal{S} is a subset of \mathbb{N}^n and $1 \leq j \leq n$, we define

$$\widetilde{\mathcal{S}}_j = \Big\{ \widetilde{\mathbf{r}} = (r_1, \dots, r_{n-1}) \in \mathbb{N}^{n-1} : \sum_{\substack{s \in \mathbb{N} \\ \sigma_j(s, \widetilde{\mathbf{r}}) \in \mathcal{S}}} \frac{1}{s+1} = \infty \Big\}.$$

The following definition is given in [4]. For completeness, we recall it here.

Definition 2.1. We say that S has property (P) if one of the following statements holds.

(1) $\mathcal{S} = \emptyset$, or

(2)
$$\mathcal{S} \neq \emptyset$$
, $n = 1$ and $\sum_{s \in \mathcal{S}} \frac{1}{s+1} < \infty$, or

(3) $S \neq \emptyset$, $n \geq 2$ and for any $1 \leq j \leq n$, the set \widetilde{S}_j has property (P) as a subset of \mathbb{N}^{n-1} .

With the above definition, the following statements hold.

- (1) If $S \subset \mathbb{N}$ and S does not have property (P), then $\sum_{s \in S} \frac{1}{s+1} = \infty$. If $S \subset \mathbb{N}^n$ with $n \ge 2$ and S does not have property (P), then \widetilde{S}_j does not have property (P) as a subset of \mathbb{N}^{n-1} for some $1 \le j \le n$.
- (2) If S_1 and S_2 are subsets of \mathbb{N}^n that both have property (P) then $S_1 \cup S_2$ also has property (P).
- (3) If $\mathcal{S} \subset \mathbb{N}^n$ has property (P) and $l \in \mathbb{Z}^n$ then $(\mathcal{S} + l) \cap \mathbb{N}^n$ also has property (P). Here, $\mathcal{S} + l = \{m + l : m \in \mathcal{S}\}.$
- (4) If $S \subset \mathbb{N}^n$ has property (P) then $\mathbb{N} \times S$ also has property (P) as a subset of \mathbb{N}^{n+1} . This follows by induction on n.
- (5) The set \mathbb{N}^n does not have property (P) for all $n \geq 1$. This together with (2) shows that if $\mathcal{S} \subset \mathbb{N}^n$ has property (P) then $\mathbb{N}^n \setminus \mathcal{S}$ does not have property (P).
- (6) For any $\mathbf{m} = (m_1, \ldots, m_n)$ and $\mathbf{k} = (k_1, \ldots, k_n)$ in \mathbb{N} , we write $\mathbf{m} \succeq \mathbf{k}$ if $m_j \ge k_j$ for all $1 \le j \le n$ and write $\mathbf{m} \not\succeq \mathbf{k}$ if otherwise. Then for any fixed $\mathbf{k} \in \mathbb{N}^n$, the set $\mathcal{S} = \{\mathbf{m} \in \mathbb{N}^n : \mathbf{m} \not\succeq \mathbf{k}\}$ has property (P). This follows from (2), (4) and the fact that

$$\mathcal{S} \subset \bigcup_{j=1}^{n} \mathbb{N} \times \cdots \times \mathbb{N} \times \{0, \dots, k_j - 1\} \times \mathbb{N} \times \cdots \times \mathbb{N}.$$

The following proposition shows that if the zero set of a holomorphic function (under certain additional assumptions) does not have property (P) then the function is identically zero. The proof is in Section 3 in [4].

Proposition 2.2 (Proposition 3.2 in [4]). Let \mathbb{K} denote the right half of the complex plane. Let $F : \mathbb{K}^n \to \mathbb{C}$ be a holomorphic function. Suppose there exists a polynomial p such that $|F(\mathbf{z})| \leq p(|\mathbf{z}|)$ for all $\mathbf{z} \in \mathbb{K}^n$. Put $Z(F) = {\mathbf{r} \in \mathbb{N}^n : F(\mathbf{r}) = 0}$. If Z(F) does not have property (P), then F is identically zero in \mathbb{K}^n .

We are now ready for the statement and proof of a refined version of Theorem 1.1.

Theorem 2.3. Suppose $S \subset \mathbb{N}^n$ is a set that has property (P). Let \mathcal{N} be the linear subspace of \mathcal{P} spanned by the monomials $\{\mathbf{z}^{\mathbf{m}} : \mathbf{m} \in \mathbb{N}^n \setminus S\}$. Let $L^*(\mathcal{N}, \mathbb{C})$ denote the space of all conjugate-linear functionals on \mathcal{N} . Suppose μ is a complex regular Borel measure on \mathbb{C}^n with compact support. Let $L_{\mu} : \mathcal{N} \longrightarrow L^*(\mathcal{N}, \mathbb{C})$ be the operator defined by $L_{\mu}f(g) = \int_{\mathbb{C}^n} f\bar{g}d\mu$ for $f, g \in \mathcal{N}$. If L_{μ} has finite rank, then $\tilde{\mu}$ is a linear combination of point masses, where $d\tilde{\mu}(\mathbf{z}) = |z_1| \cdots |z_n| d\mu(\mathbf{z})$ for $\mathbf{z} \in \mathbb{C}^n$. As a consequence, if μ is absolutely continuous with respect to the Lebesgue measure on \mathbb{C}^n , then μ is the zero measure.

Proof. Suppose L_{μ} has rank strictly less than N, where $N \geq 1$. Arguing as in pages 2 and 3 in [1], for any polynomials f_1, \ldots, f_N and g_1, \ldots, g_N in \mathcal{N} , we have

$$\int_{\mathbb{C}^{n\times N}} \left(\prod_{j=1}^{N} f_j(\mathbf{z}_j)\right) \det(\bar{g}_i(\mathbf{z}_j)) \mathrm{d}\mu^N(\mathbf{z}_1,\dots,\mathbf{z}_N) = 0,$$
(1)

where μ^N is the product of N copies of μ on $\mathbb{C}^{n \times N}$.

Let $\mathbf{m}_1, \ldots, \mathbf{m}_N$ and $\mathbf{k}_1, \ldots, \mathbf{k}_N$ be multi-indices in \mathbb{N}^n . Let

$$L = \{\mathbf{l} \in \mathbb{N}^n : \mathbf{l} + \mathbf{m}_j \notin \mathcal{S} \text{ and } \mathbf{l} + \mathbf{k}_j \notin \mathcal{S} \text{ for all } 1 \le j \le N \}$$
$$= \mathbb{N}^n \setminus \left(\left(\bigcup_{j=1}^N (\mathcal{S} - \mathbf{m}_j) \right) \bigcup \left(\bigcup_{j=1}^N (\mathcal{S} - \mathbf{k}_j) \right) \right).$$

Since S has property (P) we see that $\mathbb{N}^n \setminus L$ has property (P). This implies that L does not have property (P). For any $\mathbf{l} \in L$, the monomials $f_j(\mathbf{z}) = \mathbf{z}^{\mathbf{m}_j+\mathbf{l}}$ and $g_j(\mathbf{z}) = \mathbf{z}^{\mathbf{k}_j+\mathbf{l}}$ are in \mathcal{N} for $j = 1, \ldots, N$. Equation (1) then implies that

$$\begin{split} 0 &= \int_{\mathbb{C}^{n \times N}} \left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}+\mathbf{l}} \right) \det((\bar{\mathbf{z}}_{j}^{\mathbf{k}_{i}+\mathbf{l}})) d\mu^{N}(\mathbf{z}_{1}, \dots, \mathbf{z}_{N}) \\ &= \int_{\mathbb{C}^{n \times N}} \left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}} \right) \det((\bar{\mathbf{z}}_{j}^{\mathbf{k}_{i}})) \left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{l}} \bar{\mathbf{z}}_{j}^{\mathbf{l}} \right) d\mu^{N}(\mathbf{z}_{1}, \dots, \mathbf{z}_{N}) \\ &= \int_{\mathbb{C}^{n \times N}} \left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}} \right) \det((\bar{\mathbf{z}}_{j}^{\mathbf{k}_{i}})) \left(\prod_{j=1}^{N} \prod_{s=1}^{n} |z_{j,s}|^{2l_{s}} \right) d\mu^{N}(\mathbf{z}_{1}, \dots, \mathbf{z}_{N}) \\ &= \int_{\mathbb{C}^{n \times N}} \left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}} \right) \det((\bar{\mathbf{z}}_{j}^{\mathbf{k}_{i}})) \left(\prod_{s=1}^{n} (\prod_{j=1}^{N} |z_{j,s}|)^{2l_{s}} \right) d\mu^{N}(\mathbf{z}_{1}, \dots, \mathbf{z}_{N}), \end{split}$$

where $\mathbf{l} = (l_1, \ldots, l_n)$ and $\mathbf{z}_j = (z_{j,1}, \ldots, z_{j,n})$ for $1 \le j \le N$. Suppose that μ is supported in the ball $\mathbb{B}(0, R)$ of radius R centered at 0 in \mathbb{C}^n . Then μ^N is supported in the product of N copies of $\mathbb{B}(0, R)$ in $\mathbb{C}^{n \times N}$. For any $\zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n$ with $\Re(\zeta_1), \ldots, \Re(\zeta_n) > 0$, define

$$F(\zeta) = \int_{\mathbb{C}^{n \times N}} \left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}}\right) \det((\bar{\mathbf{z}}_{j}^{\mathbf{k}_{i}})) \left(\prod_{s=1}^{n} (\prod_{j=1}^{N} |z_{j,s}|R^{-1})^{2\zeta_{s}}\right) d\mu^{N}(\mathbf{z}_{1}, \dots, \mathbf{z}_{N})$$
$$= \int_{(\mathbb{B}(0,R))^{N}} \left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}}\right) \det((\bar{\mathbf{z}}_{j}^{\mathbf{k}_{i}})) \left(\prod_{s=1}^{n} (\prod_{j=1}^{N} |z_{j,s}|R^{-1})^{2\zeta_{s}}\right) d\mu^{N}(\mathbf{z}_{1}, \dots, \mathbf{z}_{N}).$$

Then F is holomorphic and bounded on its defining domain and $F(\mathbf{l}) = 0$ for all \mathbf{l} in L. Since L does not have property (P), Proposition 2.2 implies that $F(\zeta) = 0$ for all $\zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n$ with $\Re(\zeta_1), \ldots, \Re(\zeta_n) > 0$. In particular, we have $F(\frac{1}{2}, \ldots, \frac{1}{2}) = 0$. This shows that

$$0 = \int_{\mathbb{C}^{n \times N}} \left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}} \right) \det((\bar{\mathbf{z}}_{j}^{\mathbf{k}_{j}})) \left(\prod_{s=1}^{n} (\prod_{j=1}^{N} |z_{j,s}|) \right) d\mu^{N}(\mathbf{z}_{1}, \dots, \mathbf{z}_{N})$$
$$= \int_{\mathbb{C}^{n \times N}} \left(\prod_{j=1}^{N} \mathbf{z}_{j}^{\mathbf{m}_{j}} \right) \det((\bar{\mathbf{z}}_{j}^{\mathbf{k}_{j}})) d\tilde{\mu}^{N}(\mathbf{z}_{1}, \dots, \mathbf{z}_{N}),$$

where $\tilde{\mu}^N$ is the product of N copies of $\tilde{\mu}$. Since $\mathbf{m}_1, \ldots, \mathbf{m}_N$ and $\mathbf{k}_1, \ldots, \mathbf{k}_N$ were arbitrary, by taking finite sums, we conclude that

$$\int_{\mathbb{C}^{n\times N}} \left(\prod_{j=1}^{N} f_j(\mathbf{z}_j)\right) \det(\bar{g}_i(\mathbf{z}_j)) \mathrm{d}\tilde{\mu}^N(\mathbf{z}_1,\dots,\mathbf{z}_N) = 0,$$
(2)

where f_1, \ldots, f_N and g_1, \ldots, g_N are in \mathcal{P} . Now following Choe's proof on pages 3–6 in [1], we see that $\tilde{\mu}$ is supported in a set of less than N points. \Box

Remark 2.4. Suppose n = 1. Then $\tilde{\mu}$ is a linear combination of point masses implies that μ is also a linear combination of point masses.

Remark 2.5. Suppose $n \geq 2$. Let $S = \{\mathbf{m} = (m_1, \ldots, m_n) \in \mathbf{N}^n : m_1 \cdots m_n = 0\}$. Then S has property (P). Let $W = \{\mathbf{z} = (z_1, \ldots, z_n) \in \mathbb{C}^n : z_1 \cdots z_n = 0\}$. If μ is any complex regular Borel measure supported on W then for any f, g in \mathcal{N} (recall that $\mathcal{N} = \text{Span}\{e_{\mathbf{m}} : \mathbf{m} \in \mathbb{N}^n \setminus S\}$), we have

$$\int_{\mathbb{C}^n} f\bar{g} \mathrm{d}\mu = \int_W f\bar{g} \mathrm{d}\mu = 0,$$

because f and g vanish on W. This shows that L_{μ} is the zero operator from \mathcal{N} into $L^*(\mathcal{N}, \mathbb{C})$. However, since W is an infinite set, μ may not be a inear combination of point masses.

3. FINITE-RANK TOEPLITZ PRODUCTS

In the first part of this section, we use Theorem 2.3 to show that under certain conditions on the bounded operators S_1 and S_2 on A_{α}^2 , if $f \in L_{\alpha}^2$ so that $S_2T_fS_1$ is a finite-rank operator, then f must be zero almost everywhere on \mathbb{B}_n .

Theorem 3.1. Let S_1, S_2 be two bounded operators on A^2_{α} . Suppose there is a set $S \subset \mathbb{N}^n$ which has property (P) such that $\ker(S_2) \subset \overline{\mathcal{M}}$ and $\mathcal{N} \subset \operatorname{ran}(S_1)$. Here \mathcal{M} (respectively, \mathcal{N}) is the linear subspace of A^2_{α} spanned by $\{\mathbf{z}^{\mathbf{m}} : \mathbf{m} \in S\}$ (respectively, $\{\mathbf{z}^{\mathbf{m}} : \mathbf{m} \in \mathbb{N}^n \setminus S\}$). Suppose $f \in L^2_{\alpha}$ so that the operator $S_2T_fS_1$ has finite rank, then f is the zero function.

TRIEU LE

Proof. Since $S_2T_fS_1$ has finite rank and $\mathcal{N} \subset S_1(A_\alpha^2)$, we see that $S_2T_f(\mathcal{N})$ is a finite-dimensional linear subspace of A_α^2 . Let $\{u_1, \ldots, u_N\}$ be a basis for this space. Let $v_j \in A_\alpha^2$ such that $S_2v_j = u_j$ for $1 \leq j \leq N$. It then follows that $T_f(\mathcal{N})$ is contained in Span(ker $(S_2) \cup \{v_1, \ldots, v_N\}$), which is a subspace of Span $(\overline{\mathcal{M}} \cup \{v_1, \ldots, v_N\})$. Let $P_{\overline{\mathcal{M}}}$ denote the orthogonal projection from A_α^2 onto $\overline{\mathcal{M}}$. Replacing v_j by $v_j - P_{\overline{\mathcal{M}}}v_j$ if necessary, we may assume that $v_j \perp \mathcal{M}$ for $1 \leq j \leq N$. Using the Gram-Schmidt process if necessary, we may assume that $\{v_1, \ldots, v_N\}$ is an orthonormal set in A_α^2 (we may have fewer vectors after using Gram-Schmidt process but let us still denote by Nthe total number of vectors).

For any p in \mathcal{N} we have

$$T_f p = P_{\bar{\mathcal{M}}} T_f p + \sum_{j=1}^N \langle T_f p, v_j \rangle_\alpha v_j = P_{\bar{\mathcal{M}}} T_f p + \sum_{j=1}^N \langle f p, v_j \rangle_\alpha v_j.$$

Now for any q in \mathcal{N} , since $q \perp \mathcal{M}$, we have

$$\int_{\mathbb{B}_n} fp\bar{q} d\nu_{\alpha} = \langle T_f p, q \rangle_{\alpha}$$
$$= \langle P_{\bar{\mathcal{M}}} T_f p, q \rangle_{\alpha} + \sum_{j=1}^N \langle fp, v_j \rangle_{\alpha} \langle v_j, q \rangle_{\alpha}$$
$$= \sum_{j=1}^N \langle fp, v_j \rangle_{\alpha} \langle v_j, q \rangle_{\alpha}.$$

Let $d\mu = f d\nu_{\alpha}$. Then the map L_{μ} from \mathcal{N} into the space of all conjugatelinear functionals on \mathcal{N} defined by $L_{\mu}p(q) = \int_{\mathbb{B}_n} p\bar{q}d\mu = \int_{\mathbb{B}_n} p\bar{q}f d\nu_{\alpha}$ has finite rank. Theorem 2.3 then implies that μ is the zero measure. Thus f is zero almost everywhere on \mathbb{B}_n .

Suppose $\tilde{f} \in L^{\infty}$ such that

$$\tilde{f}(z_1, \dots, z_n) = \tilde{f}(|z_1|, \dots, |z_n|) \text{ for almost all } \mathbf{z} \in \mathbb{B}_n.$$
 (3)

Then for any \mathbf{m}, \mathbf{k} in \mathbb{N}^n , we have

$$\langle T_{\tilde{f}} e_{\mathbf{m}}, e_{\mathbf{k}} \rangle_{\alpha} = \int_{\mathbb{B}_{n}} \tilde{f}(\mathbf{z}) e_{\mathbf{m}}(\mathbf{z}) \bar{e}_{\mathbf{k}}(\mathbf{z}) d\nu_{\alpha}(\mathbf{z})$$

$$= \int_{\mathbb{B}_{n}} \tilde{f}(|z_{1}|, \dots, |z_{n}|) e_{\mathbf{m}}(\mathbf{z}) \bar{e}_{\mathbf{k}}(\mathbf{z}) d\nu_{\alpha}(\mathbf{z})$$

$$= C(\mathbf{m}, \mathbf{k}, n, \alpha) \int_{\mathbb{B}_{n}} \tilde{f}(|z_{1}|, \dots, |z_{n}|) \mathbf{z}^{\mathbf{m}} \bar{\mathbf{z}}^{\mathbf{m}} d\nu_{\alpha}(\mathbf{z})$$

FINITE-RANK PRODUCTS OF TOEPLITZ OPERATORS

$$= \begin{cases} 0 & \text{if } \mathbf{m} \neq \mathbf{k} \\ C(\mathbf{m}, n, \alpha) \int_{\mathbb{B}_n} \tilde{f}(|z_1|, \dots, |z_n|) \mathbf{z}^{\mathbf{m}} \bar{\mathbf{z}}^{\mathbf{m}} d\nu_{\alpha}(\mathbf{z}) & \text{if } \mathbf{m} = \mathbf{k} \end{cases}$$

The last equality follows from the invariance of the measure ν_{α} under the action of the *n*-torus (see also Corollary 3.5 in [4] for more detail). This implies that $T_{\tilde{f}}$ is a diagonal operator with respect to the standard orthonormal basis of A_{α}^2 . The eigenvalues of $T_{\tilde{f}}$ are given by

$$\omega_{\alpha}(\tilde{f}, \mathbf{m}) = \langle T_{\tilde{f}} e_{\mathbf{m}}, e_{\mathbf{m}} \rangle_{\alpha}, \quad \mathbf{m} \in \mathbb{N}^{n}.$$
(4)

If the set $Z(\tilde{f}) = {\mathbf{m} \in \mathbb{N}^n : \omega_\alpha(\tilde{f}, \mathbf{m}) = 0}$ does not have property (P) then by Lemma 3.3 in [5], it is all of \mathbb{N}^n . This implies that $T_{\tilde{f}}$ is the zero operator, hence \tilde{f} is the zero function on \mathbb{B}_n . Therefore, if \tilde{f} is not the zero function on \mathbb{B}_n then $Z(\tilde{f})$ has property (P).

Now suppose \mathbf{s}, \mathbf{t} are in \mathbb{N}^n . Let $f(\mathbf{z}) = \mathbf{z}^{\mathbf{s}} \bar{\mathbf{z}}^{\mathbf{t}} \tilde{f}(\mathbf{z})$ for $\mathbf{z} \in \mathbb{B}_n$. For \mathbf{m}, \mathbf{k} in \mathbb{N}^n , we have

$$\langle T_f e_{\mathbf{m}}, e_{\mathbf{k}} \rangle_{\alpha} = C(\mathbf{m}, \mathbf{s}, \mathbf{k}, \mathbf{t}, n, \alpha) \langle \tilde{f} e_{\mathbf{m}+\mathbf{s}}, e_{\mathbf{k}+\mathbf{t}} \rangle_{\alpha}$$

$$= \begin{cases} 0 & \text{if } \mathbf{m} + \mathbf{s} \neq \mathbf{k} + \mathbf{t}, \\ C(\mathbf{m}, \mathbf{s}, \mathbf{k}, \mathbf{t}, n, \alpha) \omega_{\alpha}(\tilde{f}, \mathbf{m} + \mathbf{s}) & \text{if } \mathbf{m} + \mathbf{s} = \mathbf{k} + \mathbf{t}. \end{cases}$$

This shows that

$$T_{f}e_{\mathbf{m}} = \begin{cases} 0 & \text{if } \mathbf{m} \not\geq \mathbf{t} - \mathbf{s}, \\ C(\mathbf{m}, \mathbf{s}, \mathbf{m} + \mathbf{s} - \mathbf{t}, \mathbf{t}, n, \alpha) \omega_{\alpha}(\tilde{f}, \mathbf{m} + \mathbf{s}) e_{\mathbf{m} + \mathbf{s} - \mathbf{t}} & \text{if } \mathbf{m} \succeq \mathbf{t} - \mathbf{s}. \end{cases}$$
(5)

Note that the constant $C(\mathbf{m}, \mathbf{s}, \mathbf{m} + \mathbf{s} - \mathbf{t}, \mathbf{t}, n, \alpha)$ is positive.

Now suppose $\tilde{f}_1, \ldots, \tilde{f}_r$ be functions in L^{∞} satisfying (3), none of which is the zero function. Let $\mathbf{s}_1, \ldots, \mathbf{s}_r$ and $\mathbf{t}_1, \ldots, \mathbf{t}_r$ be multi-indices in \mathbb{N}^n . For each $1 \leq j \leq r$, let $f_j(\mathbf{z}) = \mathbf{z}^{\mathbf{s}_j} \bar{\mathbf{z}}^{\mathbf{t}_j} \tilde{f}_j(\mathbf{z})$ for $\mathbf{z} \in \mathbb{B}_n$. Let $S = T_{f_r} \cdots T_{f_1}$. For any multi-index $\mathbf{m} \succeq \sum_{j=1}^r (\mathbf{s}_j + \mathbf{t}_j)$, using (5), we see that there is a positive constant C depending on $\mathbf{m}, \mathbf{s}_1, \ldots, \mathbf{s}_r, \mathbf{t}_1, \ldots, \mathbf{t}_r, n$ and α so that

$$Se_{\mathbf{m}} = C \cdot \left(\prod_{j=1}^{r} \omega_{\alpha} \left(\tilde{f}_{j}, \mathbf{m} + \sum_{i=1}^{j-1} (\mathbf{s}_{i} - \mathbf{t}_{i}) + \mathbf{s}_{j}\right)\right) e_{\mathbf{m} + \sum_{j=1}^{r} (\mathbf{s}_{j} - \mathbf{t}_{j})}.$$
 (6)

Define

$$\mathcal{J} = \left\{ \mathbf{m} : \mathbf{m} \not\leq \sum_{j=1}^{r} (\mathbf{s}_{j} + \mathbf{t}_{j}) \right\}$$
$$\bigcup \left\{ \mathbf{m} : \prod_{j=1}^{r} \omega_{\alpha} \left(\tilde{f}_{j}, \mathbf{m} + \sum_{i=1}^{j-1} (\mathbf{s}_{i} - \mathbf{t}_{i}) + \mathbf{s}_{j} \right) = 0 \right\}$$
$$= \left\{ \mathbf{m} : \mathbf{m} \not\geq \sum_{j=1}^{r} (\mathbf{s}_{j} + \mathbf{t}_{j}) \right\} \bigcup \left(\bigcup_{j=1}^{r} \left(Z(\tilde{f}_{j}) - (\sum_{i=1}^{j-1} (\mathbf{s}_{i} - \mathbf{t}_{i}) + \mathbf{s}_{j}) \right) \right).$$

Since none of the functions f_1, \ldots, f_r is the zero function, the set \mathcal{J} has property (P). For $\mathbf{m} \in \mathbb{N}^n \setminus \mathcal{J}$, we see that $Se_{\mathbf{m}} \neq 0$ and $e_{\mathbf{m} + \sum_{j=1}^r (\mathbf{s}_j - \mathbf{t}_j)}$ is a multiple of $Se_{\mathbf{m}}$. Suppose $\varphi \in A_{\alpha}^2$ such that $S\varphi = 0$. Then we have

$$0 = S\varphi = S\Big(\sum_{\mathbf{m}\in\mathbb{N}^n} \langle \varphi, e_{\mathbf{m}} \rangle_{\alpha} e_{\mathbf{m}}\Big) = \sum_{\mathbf{m}\in\mathbb{N}^n} \langle \varphi, e_{\mathbf{m}} \rangle_{\alpha} Se_{\mathbf{m}}$$

So (6) implies that for any $\mathbf{m} \in \mathbb{N}^n \setminus \mathcal{J}$, $\langle \varphi, e_{\mathbf{m}} \rangle_{\alpha} = 0$. Therefore ker(S) is contained in the closure in A_{α}^2 of the linear span of $\{e_{\mathbf{m}} : \mathbf{m} \in \mathcal{J}\}$. Now put

$$\mathcal{I} = \left\{ \mathbf{k} \in \mathbb{N}^n : \mathbf{k} \not\succeq \sum_{j=1}^r (\mathbf{s}_j - \mathbf{t}_j) \right\} \bigcup \left(\mathbb{N}^n \bigcap \left(\mathcal{J} + \sum_{j=1}^r (\mathbf{s}_j - \mathbf{t}_j) \right) \right).$$

Then \mathcal{I} has property (P) and for any $\mathbf{k} \in \mathbb{N}^n \setminus \mathcal{I}$, $\mathbf{m} = \mathbf{k} - \sum_{j=1}^r (\mathbf{s}_j - \mathbf{t}_j)$ belongs to $\mathbb{N}^n \setminus \mathcal{J}$. It then follows that $e_{\mathbf{k}} = e_{\mathbf{m} + \sum_{j=1}^r (\mathbf{s}_j - \mathbf{t}_j)}$ is a multiple of $Se_{\mathbf{m}}$. So the linear span of $\{e_{\mathbf{k}} : \mathbf{k} \in \mathbb{N}^n \setminus \mathcal{I}\}$ is contained in the range of S.

We now prove a result about products of Toeplitz operators on A^2_{α} .

Theorem 3.2. Let r_1 and r_2 be two positive integers. Let $\tilde{f}_1, \ldots, \tilde{f}_{r_1+r_2}$ be functions in L^{∞} satisfying (3), none of which is the zero function. Let $\mathbf{s}_1, \ldots, \mathbf{s}_{r_1+r_2}$ and $\mathbf{t}_1, \ldots, \mathbf{t}_{r_1+r_2}$ be multi-indices in \mathbb{N}^n . For each $1 \leq j \leq$ $r_1 + r_2$, let $f_j(\mathbf{z}) = \mathbf{z}^{\mathbf{s}_j} \bar{\mathbf{z}}^{\mathbf{t}_j} \tilde{f}_j(\mathbf{z})$ for $\mathbf{z} \in \mathbb{B}_n$. If $f \in L^2_{\alpha}$ such that the operator $T_{f_{r_1+r_2}} \cdots T_{f_{r_1+1}} T_f T_{f_{r_1}} \cdots T_{f_1}$ (which is densely defined on A^2_{α}) has finite rank, then f is the zero function.

Proof. Let $S_1 = T_{f_{r_1}} \cdots T_{f_1}$ and $S_2 = T_{f_{r_1+r_2}} \cdots T_{f_{r_1+1}}$. From the discussion preceding the theorem, there are subsets \mathcal{J} and \mathcal{I} of \mathbb{N}^n that have property (P) such that ker(S_2) is contained in the closure in A^2_{α} of Span($\{e_{\mathbf{m}} : m \in \mathcal{J}\}$) and Span($\{e_{\mathbf{k}} : \mathbf{k} \in \mathbb{N}^n \setminus \mathcal{I}\}$) is a subspace of $S_1(A^2_{\alpha})$. Let $\mathcal{S} = \mathcal{J} \cup \mathcal{I}$. Then \mathcal{S} has property (P), ker(S_2) $\subset \overline{\mathcal{M}}$ and $\mathcal{N} \subset S_1(A^2_{\alpha})$, where \mathcal{M} (respectively, \mathcal{N}) is the linear subspace of A^2_{α} spanned by $\{\mathbf{z}^{\mathbf{m}} : \mathbf{m} \in \mathcal{S}\}$ (respectively, $\{\mathbf{z}^{\mathbf{m}} : \mathbf{m} \in \mathbb{N}^n \setminus \mathcal{S}\}$). If $f \in L^2_{\alpha}$ such that $S_2T_fS_1$ has finite rank, then Theorem 3.1 implies that f is the zero function.

Remark 3.3. Suppose n = 1. The functions f_j 's in the hypothesis of Theorem 3.2 are called quasihomogeneous functions. Each T_{f_j} is a weighted forward or backward shift. It was showed in [2] (Theorem 2) that if the product

8

of finitely many Toeplitz operators whose symbols are bounded quasihomogeneous functions is of finite rank then one of the functions must be zero. This result is a special case of our Theorem 3.2 above.

In [3], K. Guo, S. Sun and D. Zheng showed that if f and g are bounded harmonic functions on the unit disk and T_fT_g has finite rank then either f = 0 or g = 0. However, for arbitrary bounded measurable functions f and g, it is still not known whether $T_fT_g = 0$ implies one of these functions must be the zero function.

References

- [1] Boo Rim Choe, On higher dimensional Luecking's theorem, preprint, available at http://math.korea.ac.kr/~choebr/recent.html.
- [2] Željko Čučković and Issam Louhichi, Finite rank commutators and semicommutators of quasihomogeneous toeplitz operators, Complex Anal. Oper. Theory 2 (2008), no. 3, 429–439.
- Kunyu Guo, Shunhua Sun, and Dechao Zheng, Finite rank commutators and semicommutators of Toeplitz operators with harmonic symbols, Illinois J. Math. 51 (2007), no. 2, 583–596 (electronic). MR 2342676
- [4] Trieu Le, The commutants of certain Toeplitz operators on weighted Bergman spaces, preprint, available at http://www.math.uwaterloo.ca/~t29le/Papers.htm.
- [5] _____, A refined Luecking's theorem and finite rank products of Toeplitz operators, preprint, available at http://www.math.uwaterloo.ca/~t29le/Papers.htm.
- [6] Daniel H. Luecking, Finite rank Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1717–1723.
- [7] Grigori Rozenblum and Nikolay Shirokov, Finite rank Bergman-Toeplitz and Bargmann-Toeplitz operators in many dimensions, preprint, available at http://front.math.ucdavis.edu/0802.0192.
- [8] Kehe Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005. MR 2115155 (2006d:46035)

TRIEU LE, DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, 200 UNIVERSITY AVENUE WEST, WATERLOO, ONTARIO, CANADA N2L 3G1

E-mail address: t29le@math.uwaterloo.ca