FINITE RANK TOEPLITZ OPERATORS

TRIEU LE

ABSTRACT. In this note we offer a modified proof of a theorem by
Borichev and Rozenblum [2] on finite rank Toeplitz operators whose
symbols may have unbounded supports.

For the background on the problem, the reader is referred to [I, 2]. It
is now a well-known result of D. Luecking [4] that if x is a complex Borel
measure with a compact support such that the functional

(Tup)(@) = /(C pqdyp for p,q analytic polynomials,

has finite rank, then yu is a finite combination of point masses. As a conse-
quence, if ¢ is a bounded function with a compact support and 7T, has finite
rank on the Fock space F?, then ¢ = 0.

Luecking’s proof does not carry over to the case where the measure y has
an unbounded support. In fact, there are examples where p # 0 but 7, = 0.
This was discovered by Grudsky and Vasilevski [3]. Concrete examples were
presented in [I, Proposition 4.6].

In [5], Rozenblum obtained Luecking’s Theorem for non-compactly sup-
ported measures with certain decay restrictions at infinity. Very recently,
Borichev and Rozenblum [2] settled the finite rank problem, proving that if
¢ is bounded and T, has finite rank on F?2, then ¢ = 0. In this note we
provide a simplification of their proof.

We first recall the following result from [I].

Lemma 1. Let ¢ be a bounded measurable function. Suppose fi,...,fn
and g1,...,9gn are functions in F? such that T, = Zé\;(-, fi)g;. Then the
function W (z) = Z;Vﬂ fi(2)gj(—2) and all of its partial derivatives vanish
at infinity.

Furthermore, if W =0, then ¢ = 0 almost everywhere.

It was shown in [2] that such a function W in Lemma[l|must vanish iden-
tically on C. The main purpose of this note is to provide a simplified proof
of this result. The proof presented here essentially follows the arguments in
[2]. My contribution is Lemma [3| below.

Theorem 2 (Borichev-Rozenblum). Let fi,..., fy and g1,...,9n be entire
functions. Put

W(z) = f1(2)g1(2) + -+ + [n(2)gn(2)  for z€C.

Suppose all partial derivatives 8§6lEW with 0 < k1 < N — 1 vanish at
infinity. Then W(z) =0 for all z € C.
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We first prove an auxiliary result. We shall think of any vector in CV
as a column vector. For vq,...,vy_1 in CV, we use det(vq,...,vy_1) to
denote the determinant of the matrix whose jth column is the vector v;, for
each0<j<N-—1.

Lemma 3. Let vo,...,vy_1 and g, ..., un_1 be vectors in CN. Suppose
there is a number € > 0 such that |(vi, ;)| < € for all 0 < k,l < N — 1.
Then

| det(vo,...,vy—_1)det(ug,...,uny_1)| < (e\/N)N.

Proof. Let A denote the matrix whose columns are the vectors vg,...,vy_1
and B be the matrix whose columns are ug,...uy_1. By assumption, the
modulus of each entry of the product B*A is at most . Hadamard’s in-
equality gives | det(B*A)| < (ev/N)V. Since

|det(B*A)| = | det(B*) det(A)| = | det(B) det(A)|
= |det(vo,...,vy_1)det(ug,...,un_1)|,
the conclusion of the lemma follows. O

Proof of Theorem[9. For the purpose of obtaining a contradiction, suppose
W were not identically zero on C. By combining the functions if necessary,
we may assume that the functions fi,..., fy are linearly independent and
gi,--.,gn are also linearly independent, where N > 1.

For 0 < j < N —1, let v; (respectively, u;) be a column vector whose

components are the derivatives fl(]), een ](\?) (respectively, 953)7 . ,gj(\j,)). Let
F (respectively, G) denote the Wronskian of the functions fi,..., fx (re-
spectively, g1,...,gn). We then have F(z) = det(vo(2),...,vn—_1(2)) and
G(z) = det(ug(2),...,un—1(2)).

Let € > 0 be given. By the hypothesis, there is a number R, > 0 such
that

(i) w(2)] = 1A ()3 () + -+ £ (RN ()] < e,

for |z| > Re and all 0 < k,l < N — 1. Using Lemma |3] we conclude that
|F(2)G(2)] < (ev/N)N for all such z. This implies that the entire function
F-G vanishes at infinity. It follows that either F' = 0 or G = 0. Without loss
of generality, we may assume that F' = 0, which implies that the functions
f1,--., fn are linearly dependent since they are entire functions. (Note that
without certain additional assumptions, the vanishing of the Wronskian does
not imply linear dependence.) We have now reached a contraction. [l

Combining Theorem [2| and Lemma [I| we conclude

Theorem 4. Let ¢ be a bounded function on C. If T, has finite rank on
F2, then ¢ = 0 almost everywhere.
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