FINITE RANK TOEPLITZ OPERATORS

TRIEU LE

ABSTRACT. In this note we offer a modified proof of a theorem by Borichev and Rozenblum [2] on finite rank Toeplitz operators whose symbols may have unbounded supports.

For the background on the problem, the reader is referred to [1, 2]. It is now a well-known result of D. Luecking [4] that if μ is a complex Borel measure with a compact support such that the functional

$$(T_{\mu}p)(\overline{q}) = \int_{\mathbb{C}} p\overline{q} \, d\mu \text{ for } p, q \text{ analytic polynomials,}$$

has finite rank, then μ is a finite combination of point masses. As a consequence, if φ is a bounded function with a compact support and T_{φ} has finite rank on the Fock space \mathcal{F}^2 , then $\varphi \equiv 0$.

Luecking's proof does not carry over to the case where the measure μ has an unbounded support. In fact, there are examples where $\mu \neq 0$ but $T_{\mu} \equiv 0$. This was discovered by Grudsky and Vasilevski [3]. Concrete examples were presented in [1, Proposition 4.6].

In [5], Rozenblum obtained Luecking's Theorem for non-compactly supported measures with certain decay restrictions at infinity. Very recently, Borichev and Rozenblum [2] settled the finite rank problem, proving that if φ is bounded and T_{φ} has finite rank on \mathcal{F}^2 , then $\varphi \equiv 0$. In this note we provide a simplification of their proof.

We first recall the following result from [1].

Lemma 1. Let φ be a bounded measurable function. Suppose f_1, \ldots, f_N and g_1, \ldots, g_N are functions in \mathcal{F}^2 such that $T_{\varphi} = \sum_{j=1}^N \langle \cdot, f_j \rangle g_j$. Then the function $W(z) = \sum_{j=1}^N \overline{f_j(z)}g_j(-z)$ and all of its partial derivatives vanish at infinity.

Furthermore, if $W \equiv 0$, then $\varphi = 0$ almost everywhere.

It was shown in [2] that such a function W in Lemma 1 must vanish identically on \mathbb{C} . The main purpose of this note is to provide a simplified proof of this result. The proof presented here essentially follows the arguments in [2]. My contribution is Lemma 3 below.

Theorem 2 (Borichev-Rozenblum). Let f_1, \ldots, f_N and g_1, \ldots, g_N be entire functions. Put

$$W(z) = f_1(z)\overline{g}_1(z) + \dots + f_N(z)\overline{g}_N(z) \quad for \ z \in \mathbb{C}.$$

Suppose all partial derivatives $\partial_z^k \partial_{\overline{z}}^l W$ with $0 \leq k, l \leq N-1$ vanish at infinity. Then W(z) = 0 for all $z \in \mathbb{C}$.

TRIEU LE

We first prove an auxiliary result. We shall think of any vector in \mathbb{C}^N as a column vector. For $\mathbf{v}_0, \ldots, \mathbf{v}_{N-1}$ in \mathbb{C}^N , we use $\det(\mathbf{v}_0, \ldots, \mathbf{v}_{N-1})$ to denote the determinant of the matrix whose *j*th column is the vector \mathbf{v}_j , for each $0 \leq j \leq N-1$.

Lemma 3. Let $\mathbf{v}_0, \ldots, \mathbf{v}_{N-1}$ and $\mathbf{u}_0, \ldots, \mathbf{u}_{N-1}$ be vectors in \mathbb{C}^N . Suppose there is a number $\epsilon > 0$ such that $|\langle \mathbf{v}_k, \mathbf{u}_l \rangle| \leq \epsilon$ for all $0 \leq k, l \leq N-1$. Then

$$|\det(\mathbf{v}_0,\ldots,\mathbf{v}_{N-1})\det(\mathbf{u}_0,\ldots,\mathbf{u}_{N-1})| \leq (\epsilon\sqrt{N})^N.$$

Proof. Let A denote the matrix whose columns are the vectors $\mathbf{v}_0, \ldots, \mathbf{v}_{N-1}$ and B be the matrix whose columns are $\mathbf{u}_0, \ldots, \mathbf{u}_{N-1}$. By assumption, the modulus of each entry of the product B^*A is at most ϵ . Hadamard's inequality gives $|\det(B^*A)| \leq (\epsilon \sqrt{N})^N$. Since

$$|\det(B^*A)| = |\det(B^*)\det(A)| = |\det(B)\det(A)|$$
$$= |\det(\mathbf{v}_0, \dots, \mathbf{v}_{N-1})\det(\mathbf{u}_0, \dots, \mathbf{u}_{N-1})|,$$

the conclusion of the lemma follows.

Proof of Theorem 2. For the purpose of obtaining a contradiction, suppose W were not identically zero on \mathbb{C} . By combining the functions if necessary, we may assume that the functions f_1, \ldots, f_N are linearly independent and g_1, \ldots, g_N are also linearly independent, where $N \geq 1$.

For $0 \leq j \leq N-1$, let \mathbf{v}_j (respectively, \mathbf{u}_j) be a column vector whose components are the derivatives $f_1^{(j)}, \ldots, f_N^{(j)}$ (respectively, $g_1^{(j)}, \ldots, g_N^{(j)}$). Let F (respectively, G) denote the Wronskian of the functions f_1, \ldots, f_N (respectively, g_1, \ldots, g_N). We then have $F(z) = \det(\mathbf{v}_0(z), \ldots, \mathbf{v}_{N-1}(z))$ and $G(z) = \det(\mathbf{u}_0(z), \ldots, \mathbf{u}_{N-1}(z))$.

Let $\epsilon > 0$ be given. By the hypothesis, there is a number $R_{\epsilon} > 0$ such that

$$|\langle \mathbf{v}_k(z), \mathbf{u}_l(z) \rangle| = |f_1^{(k)}(z)\overline{g}_1^{(l)}(z) + \dots + f_N^{(k)}(z)\overline{g}_N^{(l)}(z)| \le \epsilon,$$

for $|z| > R_{\epsilon}$ and all $0 \le k, l \le N - 1$. Using Lemma 3, we conclude that $|F(z)G(z)| \le (\epsilon\sqrt{N})^N$ for all such z. This implies that the entire function $F \cdot G$ vanishes at infinity. It follows that either $F \equiv 0$ or $G \equiv 0$. Without loss of generality, we may assume that $F \equiv 0$, which implies that the functions f_1, \ldots, f_N are linearly dependent since they are entire functions. (Note that without certain additional assumptions, the vanishing of the Wronskian does not imply linear dependence.) We have now reached a contraction. \Box

Combining Theorem 2 and Lemma 1 we conclude

Theorem 4. Let φ be a bounded function on \mathbb{C} . If T_{φ} has finite rank on \mathcal{F}^2 , then $\varphi = 0$ almost everywhere.

References

- Wolfram Bauer and Trieu Le, Algebraic properties and the finite rank problem for Toeplitz operators on the Segal-Bargmann space, J. Funct. Anal. 261 (2011), 2617– 2640.
- [2] Alexander Borichev and Grigori Rozenblum, The finite rank theorem for Toeplitz operators on the Fock space, Journal of Geometric Analysis (2013), 1–10.

 $\mathbf{2}$

- S. M. Grudsky and N. L. Vasilevski, *Toeplitz operators on the Fock space: radial component effects*, Integral Equations Operator Theory 44 (2002), no. 1, 10–37. MR 1913421 (2003g:47049)
- [4] Daniel H. Luecking, Finite rank Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1717–1723.
- [5] Grigori Rozenblum, Finite rank Bargmann-Toeplitz operators with non-compactly supported symbols, Bull. Math. Sci. 2 (2012), no. 2, 331–341. MR 2994207

Department of Mathematics and Statistics, Mail Stop 942, University of Toledo, Toledo, OH 43606

 $E\text{-}mail\ address: \texttt{trieu.le2Qutoledo.edu}$