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Abstract. In this note we offer a modified proof of a theorem by
Borichev and Rozenblum [2] on finite rank Toeplitz operators whose
symbols may have unbounded supports.

For the background on the problem, the reader is referred to [1, 2]. It
is now a well-known result of D. Luecking [4] that if µ is a complex Borel
measure with a compact support such that the functional

(Tµp)(q) =

∫
C
pq dµ for p, q analytic polynomials,

has finite rank, then µ is a finite combination of point masses. As a conse-
quence, if ϕ is a bounded function with a compact support and Tϕ has finite
rank on the Fock space F2, then ϕ ≡ 0.

Luecking’s proof does not carry over to the case where the measure µ has
an unbounded support. In fact, there are examples where µ 6≡ 0 but Tµ ≡ 0.
This was discovered by Grudsky and Vasilevski [3]. Concrete examples were
presented in [1, Proposition 4.6].

In [5], Rozenblum obtained Luecking’s Theorem for non-compactly sup-
ported measures with certain decay restrictions at infinity. Very recently,
Borichev and Rozenblum [2] settled the finite rank problem, proving that if
ϕ is bounded and Tϕ has finite rank on F2, then ϕ ≡ 0. In this note we
provide a simplification of their proof.

We first recall the following result from [1].

Lemma 1. Let ϕ be a bounded measurable function. Suppose f1, . . . , fN
and g1, . . . , gN are functions in F2 such that Tϕ =

∑N
j=1〈·, fj〉gj. Then the

function W (z) =
∑N

j=1 fj(z)gj(−z) and all of its partial derivatives vanish
at infinity.

Furthermore, if W ≡ 0, then ϕ = 0 almost everywhere.

It was shown in [2] that such a function W in Lemma 1 must vanish iden-
tically on C. The main purpose of this note is to provide a simplified proof
of this result. The proof presented here essentially follows the arguments in
[2]. My contribution is Lemma 3 below.

Theorem 2 (Borichev-Rozenblum). Let f1, . . . , fN and g1, . . . , gN be entire
functions. Put

W (z) = f1(z)g1(z) + · · ·+ fN (z)gN (z) for z ∈ C.

Suppose all partial derivatives ∂kz ∂
l
zW with 0 ≤ k, l ≤ N − 1 vanish at

infinity. Then W (z) = 0 for all z ∈ C.
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We first prove an auxiliary result. We shall think of any vector in CN
as a column vector. For v0, . . . ,vN−1 in CN , we use det(v0, . . . ,vN−1) to
denote the determinant of the matrix whose jth column is the vector vj , for
each 0 ≤ j ≤ N − 1.

Lemma 3. Let v0, . . . ,vN−1 and u0, . . . ,uN−1 be vectors in CN . Suppose
there is a number ε > 0 such that |〈vk,ul〉| ≤ ε for all 0 ≤ k, l ≤ N − 1.
Then

| det(v0, . . . ,vN−1) det(u0, . . . ,uN−1)| ≤ (ε
√
N)N .

Proof. Let A denote the matrix whose columns are the vectors v0, . . . ,vN−1

and B be the matrix whose columns are u0, . . .uN−1. By assumption, the
modulus of each entry of the product B∗A is at most ε. Hadamard’s in-
equality gives |det(B∗A)| ≤ (ε

√
N)N . Since

| det(B∗A)| = |det(B∗) det(A)| = |det(B) det(A)|
= |det(v0, . . . ,vN−1) det(u0, . . . ,uN−1)|,

the conclusion of the lemma follows. �

Proof of Theorem 2. For the purpose of obtaining a contradiction, suppose
W were not identically zero on C. By combining the functions if necessary,
we may assume that the functions f1, . . . , fN are linearly independent and
g1, . . . , gN are also linearly independent, where N ≥ 1.

For 0 ≤ j ≤ N − 1, let vj (respectively, uj) be a column vector whose

components are the derivatives f
(j)
1 , . . . , f

(j)
N (respectively, g

(j)
1 , . . . , g

(j)
N ). Let

F (respectively, G) denote the Wronskian of the functions f1, . . . , fN (re-
spectively, g1, . . . , gN ). We then have F (z) = det(v0(z), . . . ,vN−1(z)) and
G(z) = det(u0(z), . . . ,uN−1(z)).

Let ε > 0 be given. By the hypothesis, there is a number Rε > 0 such
that

|〈vk(z),ul(z)〉| = |f
(k)
1 (z)g

(l)
1 (z) + · · ·+ f

(k)
N (z)g

(l)
N (z)| ≤ ε,

for |z| > Rε and all 0 ≤ k, l ≤ N − 1. Using Lemma 3, we conclude that

|F (z)G(z)| ≤ (ε
√
N)N for all such z. This implies that the entire function

F ·G vanishes at infinity. It follows that either F ≡ 0 or G ≡ 0. Without loss
of generality, we may assume that F ≡ 0, which implies that the functions
f1, . . . , fN are linearly dependent since they are entire functions. (Note that
without certain additional assumptions, the vanishing of the Wronskian does
not imply linear dependence.) We have now reached a contraction. �

Combining Theorem 2 and Lemma 1 we conclude

Theorem 4. Let ϕ be a bounded function on C. If Tϕ has finite rank on
F2, then ϕ = 0 almost everywhere.
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