FINITE RANK TOEPLITZ OPERATORS

TRIEU LE

Abstract

In this note we offer a modified proof of a theorem by Borichev and Rozenblum [2] on finite rank Toeplitz operators whose symbols may have unbounded supports.

For the background on the problem, the reader is referred to [1, 2]. It is now a well-known result of D. Luecking [4] that if μ is a complex Borel measure with a compact support such that the functional

$$
\left(T_{\mu} p\right)(\bar{q})=\int_{\mathbb{C}} p \bar{q} d \mu \text { for } p, q \text { analytic polynomials, }
$$

has finite rank, then μ is a finite combination of point masses. As a consequence, if φ is a bounded function with a compact support and T_{φ} has finite rank on the Fock space \mathcal{F}^{2}, then $\varphi \equiv 0$.

Luecking's proof does not carry over to the case where the measure μ has an unbounded support. In fact, there are examples where $\mu \not \equiv 0$ but $T_{\mu} \equiv 0$. This was discovered by Grudsky and Vasilevski [3. Concrete examples were presented in [1, Proposition 4.6].

In [5], Rozenblum obtained Luecking's Theorem for non-compactly supported measures with certain decay restrictions at infinity. Very recently, Borichev and Rozenblum [2] settled the finite rank problem, proving that if φ is bounded and T_{φ} has finite rank on \mathcal{F}^{2}, then $\varphi \equiv 0$. In this note we provide a simplification of their proof.

We first recall the following result from [1].
Lemma 1. Let φ be a bounded measurable function. Suppose f_{1}, \ldots, f_{N} and g_{1}, \ldots, g_{N} are functions in \mathcal{F}^{2} such that $T_{\varphi}=\sum_{j=1}^{N}\left\langle\cdot, f_{j}\right\rangle g_{j}$. Then the function $W(z)=\sum_{j=1}^{N} \overline{f_{j}(z)} g_{j}(-z)$ and all of its partial derivatives vanish at infinity.

Furthermore, if $W \equiv 0$, then $\varphi=0$ almost everywhere.
It was shown in [2] that such a function W in Lemma 1 must vanish identically on \mathbb{C}. The main purpose of this note is to provide a simplified proof of this result. The proof presented here essentially follows the arguments in [2]. My contribution is Lemma 3 below.

Theorem 2 (Borichev-Rozenblum). Let f_{1}, \ldots, f_{N} and g_{1}, \ldots, g_{N} be entire functions. Put

$$
W(z)=f_{1}(z) \bar{g}_{1}(z)+\cdots+f_{N}(z) \bar{g}_{N}(z) \quad \text { for } z \in \mathbb{C}
$$

Suppose all partial derivatives $\partial_{z}^{k} \partial_{\bar{z}}^{l} W$ with $0 \leq k, l \leq N-1$ vanish at infinity. Then $W(z)=0$ for all $z \in \mathbb{C}$.

We first prove an auxiliary result. We shall think of any vector in \mathbb{C}^{N} as a column vector. For $\mathbf{v}_{0}, \ldots, \mathbf{v}_{N-1}$ in \mathbb{C}^{N}, we use $\operatorname{det}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{N-1}\right)$ to denote the determinant of the matrix whose j th column is the vector \mathbf{v}_{j}, for each $0 \leq j \leq N-1$.
Lemma 3. Let $\mathbf{v}_{0}, \ldots, \mathbf{v}_{N-1}$ and $\mathbf{u}_{0}, \ldots, \mathbf{u}_{N-1}$ be vectors in \mathbb{C}^{N}. Suppose there is a number $\epsilon>0$ such that $\left|\left\langle\mathbf{v}_{k}, \mathbf{u}_{l}\right\rangle\right| \leq \epsilon$ for all $0 \leq k, l \leq N-1$. Then

$$
\left|\operatorname{det}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{N-1}\right) \operatorname{det}\left(\mathbf{u}_{0}, \ldots, \mathbf{u}_{N-1}\right)\right| \leq(\epsilon \sqrt{N})^{N}
$$

Proof. Let A denote the matrix whose columns are the vectors $\mathbf{v}_{0}, \ldots, \mathbf{v}_{N-1}$ and B be the matrix whose columns are $\mathbf{u}_{0}, \ldots \mathbf{u}_{N-1}$. By assumption, the modulus of each entry of the product $B^{*} A$ is at most ϵ. Hadamard's inequality gives $\left|\operatorname{det}\left(B^{*} A\right)\right| \leq(\epsilon \sqrt{N})^{N}$. Since

$$
\begin{aligned}
\left|\operatorname{det}\left(B^{*} A\right)\right| & =\left|\operatorname{det}\left(B^{*}\right) \operatorname{det}(A)\right|=|\operatorname{det}(B) \operatorname{det}(A)| \\
& =\left|\operatorname{det}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{N-1}\right) \operatorname{det}\left(\mathbf{u}_{0}, \ldots, \mathbf{u}_{N-1}\right)\right|,
\end{aligned}
$$

the conclusion of the lemma follows.
Proof of Theorem 2. For the purpose of obtaining a contradiction, suppose W were not identically zero on \mathbb{C}. By combining the functions if necessary, we may assume that the functions f_{1}, \ldots, f_{N} are linearly independent and g_{1}, \ldots, g_{N} are also linearly independent, where $N \geq 1$.

For $0 \leq j \leq N-1$, let \mathbf{v}_{j} (respectively, \mathbf{u}_{j}) be a column vector whose components are the derivatives $f_{1}^{(j)}, \ldots, f_{N}^{(j)}$ (respectively, $g_{1}^{(j)}, \ldots, g_{N}^{(j)}$). Let F (respectively, G) denote the Wronskian of the functions f_{1}, \ldots, f_{N} (respectively, $\left.g_{1}, \ldots, g_{N}\right)$. We then have $F(z)=\operatorname{det}\left(\mathbf{v}_{0}(z), \ldots, \mathbf{v}_{N-1}(z)\right)$ and $G(z)=\operatorname{det}\left(\mathbf{u}_{0}(z), \ldots, \mathbf{u}_{N-1}(z)\right)$.

Let $\epsilon>0$ be given. By the hypothesis, there is a number $R_{\epsilon}>0$ such that

$$
\left|\left\langle\mathbf{v}_{k}(z), \mathbf{u}_{l}(z)\right\rangle\right|=\left|f_{1}^{(k)}(z) \bar{g}_{1}^{(l)}(z)+\cdots+f_{N}^{(k)}(z) \bar{g}_{N}^{(l)}(z)\right| \leq \epsilon,
$$

for $|z|>R_{\epsilon}$ and all $0 \leq k, l \leq N-1$. Using Lemma 3, we conclude that $|F(z) G(z)| \leq(\epsilon \sqrt{N})^{N}$ for all such z. This implies that the entire function $F \cdot G$ vanishes at infinity. It follows that either $F \equiv 0$ or $G \equiv 0$. Without loss of generality, we may assume that $F \equiv 0$, which implies that the functions f_{1}, \ldots, f_{N} are linearly dependent since they are entire functions. (Note that without certain additional assumptions, the vanishing of the Wronskian does not imply linear dependence.) We have now reached a contraction.

Combining Theorem 2 and Lemma 1 we conclude
Theorem 4. Let φ be a bounded function on \mathbb{C}. If T_{φ} has finite rank on \mathcal{F}^{2}, then $\varphi=0$ almost everywhere.

References

[1] Wolfram Bauer and Trieu Le, Algebraic properties and the finite rank problem for Toeplitz operators on the Segal-Bargmann space, J. Funct. Anal. 261 (2011), 26172640.
[2] Alexander Borichev and Grigori Rozenblum, The finite rank theorem for Toeplitz operators on the Fock space, Journal of Geometric Analysis (2013), 1-10.
[3] S. M. Grudsky and N. L. Vasilevski, Toeplitz operators on the Fock space: radial component effects, Integral Equations Operator Theory 44 (2002), no. 1, 10-37. MR 1913421 (2003g:47049)
[4] Daniel H. Luecking, Finite rank Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1717-1723.
[5] Grigori Rozenblum, Finite rank Bargmann-Toeplitz operators with non-compactly supported symbols, Bull. Math. Sci. 2 (2012), no. 2, 331-341. MR 2994207

Department of Mathematics and Statistics, Mail Stop 942, University of Toledo, Toledo, OH 43606

E-mail address: trieu.le2@utoledo.edu

