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Abstract. In this paper we generalize the classical theorems of Brown and

Halmos about algebraic properties of Toeplitz operators to the Bergman space
over the unit ball in several complex variables. A key result, which is of

independent interest, is the characterization of summable functions u on the

unit ball whose Berezin transform B(u) can be written as a finite sum
∑

j fj ḡj
with all fj , gj being holomorphic. In particular, we show that such a function
must be pluriharmonic if it is sufficiently smooth and bounded. We also settle

an open question about M-harmonic functions. Our proofs employ techniques

and results from function and operator theory as well as partial differential
equations.

1. Introduction and main results

In their seminal work [BH64], Brown and Halmos classified all pairs of commuting
Toeplitz operators on the Hardy space over the unit disc, as well as characterized
all triples of Toeplitz operators (Tf , Tg, Th) such that TfTg = Th. They showed
that the product of two Toeplitz operators is zero if and only if one of them is
zero. These theorems are commonly referred to as the Brown–Halmos theorems.
Extending these results to the Bergman space setting and to Hilbert spaces of
holomorphic functions on more general domains in several complex variables has
been one of the central themes of research in the theory of Toeplitz operators in
the last few decades.

On the Bergman space over the unit disc, the first results in the spirit of the
Brown–Halmos theorems were obtained by Axler and Čučković [AČ91] and Ahern
and Čučković [AČ01]. It was shown in these papers that Brown–Halmos theorems
hold true on the Bergman space for Toeplitz operators with bounded harmonic
symbols. Subsequently, using his study of the range of the Berezin transform, Ahern
[Ahe04] improved the main result in [AČ01]. Guo, Sun and Zheng [GSZ07] later
studied finite rank semi-commutators and commutators of Toeplitz operators with
harmonic symbols. It was showed that semi-commutators and commutators have
finite rank if and only if they are actually zero. As a consequence, characterizations
of the symbols were given. Čučković [Čuč07] obtained criteria for TfTg − Thn to
have finite rank, where f, g and h are bounded harmonic. More general results
in this direction were investigated in [CKL08]. In a recent paper, Ding, Qin and
Zheng [DQZ17] provided a more complete answer to the possible rank of TfTg−Th
under the assumption that f, g are bounded harmonic and h is a C2-functions and
(1−|z|2)2∆h is integrable. A complete characterization of these functions was then
obtained.
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Researchers have also investigated Brown–Halmos theorems in the setting of sev-
eral complex variables. A classification of pairs of commuting Toeplitz operators
with pluriharmonic symbols on the unit ball was given by Zheng in [Zhe98]. Sub-
sequently, Choe and Koo [CK06] studied the zero product problem for Toeplitz
operators on the unit ball with harmonic symbols having continuous extensions to
part of the boundary. Finite sums of products of Toeplitz operators with pluri-
harmonic or n-harmonic symbols on the Bergman space over the polydisks were
investigated in the papers by Choe et al. [CLNZ07, CKL09]. The same prob-
lem on the Hardy space over the unit sphere was considered in [CKL11]. On the
other hand, there has not much progress in proving Brown–Halmos type results for
Toeplitz operators with plurharmonic symbols on the ball. It is our main goal to
offer such results.

While it is not the focus of the current paper, we would like to mention that
there is a vast literature on the study of Toeplitz operators with non-harmonic,
non-pluriharmonic symbols. Researchers have investigated algebraic properties of
Toeplitz operators whose symbols are radial, quasihomogeneous, or finite sums
of quasihomogeneous functions in one and several variables. See, for example,
[ČL08, GKV03, GKV04, LR08, LRZ15, LSZ06] and the references therein.

Throughout the paper, N denotes a positive integer. We write BN for the open
unit ball in CN . We use H(BN ) to the denote the algebra of all functions holo-
morphic on BN . For p > 0, the Bergman space Ap(BN ) consists of all functions in
H(BN ) that are p-integrable with respect to the normalized Lebesgue volume mea-
sure dV . The reader is referred to [Zhu05, Chapter 2] for an excellent introduction
to these Bergman spaces. We use Lp(BN ) to denote the usual Lp-space with respect
to dV . Clearly, Ap(BN ) = H(BN ) ∩ Lp(BN ). Given f ∈ L∞(BN ), one defines the
corresponding Toeplitz operator Tf : A2(BN ) −→ A2(BN ) by Tf (h) = P (fh) for
all h ∈ A2(BN ). Here P is the orthogonal projection from L2(BN ) onto A2(BN ). It
is immediate that the operator Tf is bounded and ‖Tf‖ ≤ ‖f‖∞. It is well known
that Tf can be expressed as an integral operator. In fact, we have

Tf (h)(z) =

∫
BN

f(w)h(w)

(1− 〈z, w〉)N+1
dV (w), z ∈ BN .

For f ∈ L1(BN ), the above integral is also well defined for all bounded holomorphic
functions h on the ball. As a consequence, one may define Toeplitz operators for L1-
symbols. It is well known that if f ∈ L1(BN ) is bounded on a set {z : r < |z| < 1}
for some 0 < r < 1, then Tf extends to a bounded operator on A2(BN ). See the

discussion on [AČ01, p. 204] for the one dimensional case. The general setting of
several variables is similar.

We recall here some basic properties of Toeplitz operators. For bounded func-
tions φ, ψ and complex numbers a and b, we have

Taφ+bψ = aTφ + bTψ, T ∗φ = Tφ̄.

It is also well known that if ψ or φ̄ is holomorphic, then TφTψ = Tφψ. However,
this property fails for general symbols, which is one of the reasons why the study
of Toeplitz operators has attracted a great deal of attention.

The following theorem is the main result of the paper. It is a vast generalization
of the aforementioned results and in a sense represents the best possible result one
can hope for in the spirit of Brown–Halmos theorems for Toeplitz operators with
pluriharmonic symbols. Recall that for two functions x, y ∈ A2(BN ), we use x⊗ y
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to denote the operator

(x⊗ y)(h) = 〈h, y〉x, h ∈ A2(BN ).

Theorem 1.1. Let φj , ψj be bounded pluriharmonic functions for 1 ≤ j ≤ n and
h be a C2N+2 bounded function on BN . Let x`, y` ∈ A2(BN ) for 1 ≤ ` ≤ r. Write
φj = fj + ḡj , ψj = uj + v̄j where fj , gj , uj and vj are holomorphic. Then

n∑
j=1

TφjTψj = Th +

r∑
`=1

x` ⊗ y`

if and only if h−
∑n
j=1 ḡjuj is pluriharmonic and

n∑
j=1

φjψj = h+ (1− |z|2)N+1
r∑
`=1

x`ȳ`.

As an immediate corollary, we have the following direct generalization of the
Brown–Halmos theorems, which in particular settles the zero product problem for
Toeplitz operators with pluriharmonic functions. The zero product problem for
general symbols is a long standing open problem in the area of Toeplitz operators,
which has resisted researchers’ attempts even for the unit disc. Our result here in
the single variable setting reduces to [GSZ07, Theorem 7].

Corollary 1.2. Let φ, ψ be bounded pluriharmonic functions on BN .
(a) If TφTψ = Th for some h ∈ C2N+2(BN ) ∩L∞(BN ), then φ̄ or ψ is holomor-

phic and φψ = h.
(b) If TφTψ has a finite rank, then φ or ψ must be zero.

Another direct consequence of our main result is a strengthening of the aforemen-
tioned Zheng’s theorem about commuting Toeplitz operators with pluriharmonic
symbols. In the case of a single variable, we recover [GSZ07, Theorem 6].

Corollary 1.3. Let φ, ψ be bounded pluriharmonic functions on BN . The commu-
tator [Tφ, Tψ] has a finite rank if and only if both φ, ψ are holomorphic, or both are
anti-holomorphic, or there are constants c1, c2, not both zero, such that c1φ + c2ψ
is constant on BN .

The main tool for showing our results is the Berezin transform. Recall that the
Bergman space A2(BN ) is a reproducing kernel Hilbert space with kernel

Kz(w) = K(w, z) =
1

(1− 〈w, z〉)N+1
, z, w ∈ BN .

Given a function u ∈ L1(BN ), one defines the Berezin transform of u as follows

B(u)(z) = 〈ukz, kz〉L2(BN ) = (1− |z|2)N+1

∫
BN

u(ξ)

|1− 〈z, ξ〉|2(N+1)
dV (ξ),

where

kz(w) =
K(w, z)√
K(z, z)

is the normalized reproducing kernel. More generally, given a bounded operator
S : A2(BN )→ A2(BN ), one defines similarly its Berezin transform

B(S)(z) = 〈S(kz), kz〉L2(BN ).
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It is well known that the Berezin transform is an injective map. That is, if
B(S1)(z) = B(S2)(z) for all z ∈ BN , then S1 = S2. The Berezin transform plays
an important role in the theory of Toeplitz operators. In fact, it has been used as
the main tool in the study of Brown–Halmos theorems for Toeplitz operators with
pluriharmonic symbols in most of the references we have mentioned so far.

It is clear that for u ∈ L1(BN ), the Berezin transform B(u) is real analytic on
BN . As a result, we may expand B(u) as a series

B(u)(z) =
∑
α,β

cα,βz
αz̄β .

We say that B(u) has a finite rank if the infinite matrix of coefficients [cα,β ]α,β
has a finite rank. This happens if and only if there exist holomorphic functions
f1, . . . , fn and g1, . . . , gn such that

B(u) =

n∑
j=1

fj ḡj .

Besides being interesting on its own right, the following natural question is im-
portant in regards to algebraic properties of Toeplitz operators with pluriharmonic
symbols.

Question. For which u ∈ L1(BN ) does B(u) have a finite rank?

For the unit disc on the complex plane, N. V. Rao [Rao18] provided a full reso-
lution of the above question. Rao’s result asserts that for an L1-function u on the
unit disc, B(u) has finite rank if and only if u is harmonic except at a finite set of
points. In particular, if u is also assumed to be locally bounded, then it must be
harmonic. In higher dimensions, the situation turns out to be more complicated
and high dimensional phenomena do occur. In the theorem below, we completely
describe B(u) whenever it is of finite rank. The proof of Theorem 1.1 relies heav-
ily on this result. In addition, we answer an open question about M-harmonic
functions raised in [CKL11]. We recall here that M-harmonic functions are those
annihilated by the invariant Laplacian (see Section 2). It is well known that such
functions are fixed points of the Berezin transform.

Theorem 1.4. Suppose u ∈ L1(BN ) such that B(u) has a finite rank. Then there
exists a finite set Λ ⊂ BN , a collection {Pw : w ∈ Λ} of polynomials in z and z̄ of
total degree at most 2N + 1, and a pluriharmonic function h such that for z ∈ BN ,

B(u)(z) = h(z) +
∑
w∈Λ

Pw

( z

1− 〈z, w〉

)
.

Furthermore,

(a) If u also belongs to C2N+2(BN ), then Λ ⊂ ∂BN , the unit sphere.
(b) If u belongs to L2N+2(BN ), then Λ ⊂ BN .
(c) If B(u) = f1ḡ1 + · · ·+ fdḡd, where f` ∈ A2N+2(BN ) and g` ∈ H(BN ) for all `,

then Λ ⊂ BN .

As a consequence, if both (a) and (b), or both (a) and (c) hold, then u is plurihar-
monic.
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Remark 1.5. As shown by Ahern and Rudin in [AR91] and can be verified directly,
for N ≥ 3, the function

u(z) =
z2z̄3

|1− z1|2
,

which belongs to L1(BN ), is M-harmonic. For such a function, we have B(u) = u,
so B(u) has a finite rank but u is not pluriharmonic. In the case N = 2, it can also
be verified that

u(z) =
z1z̄2

(1− z1)(1− z̄1)
− 1

2

z̄2
2z2

(1− z1)(1− z̄1)2

is an M-harmonic L1-function which is not pluriharmonic. It should be noted
that Ahern and Rudin already showed that in the case of two complex variables, if
u = fḡ (and f, g are holomorphic) isM-harmonic, then u is actually pluriharmonic.
As a result, some type of regularity near the boundary is required to conclude that
u is pluriharmonic, as in Theorem 1.1. We would like to alert the reader that the
existence of a smooth integrable function u such that B(u) has a finite rank and
u is not pluriharmonic is a high dimensional phenomenon. Indeed, it follows from
the aforementioned result of Rao that if u ∈ L1(B1) is locally bounded (without any
other assumption on regularity) so that B(u) has a finite rank, then u is harmonic.

Our proof is influenced by Rao’s idea to reformulate the finite rank property of
the Berezin transform of u in terms of a certain distribution associated to u having
a finite rank, which allows the usage of a result due to Alexandrov and Rozenblum
[AR09]. In extending this approach to the case of the unit ball in CN , significant
complications do arise. We overcome these difficulties by establishing various iden-
tities for differential operators related to the invariant Laplacian and making use
of a regularity result on integrable solutions of partial differential equations (see
Section 2).

Brown and Halmos proved that the zero operator is the only compact Toeplitz
operator on the Hardy space over the unit disc. On Bergman spaces, there are many
nontrivial compact Toeplitz operators. Indeed, whenever f is a bounded function
with a compact support contained in the unit ball, the operator Tf is compact. On
the other hand, the problem of determining nonzero finite rank Toeplitz operators
was open for quite some time. In [Lue08], Luecking settled this question in the
negative by showing that whenever ν is a compactly supported finite measure on
C for which the matrix of moments [

∫
C z

`z̄kdν(z)]`,k has finite rank, then ν is a
linear combination of finitely many point masses. Luecking’s theorem has been
generalized to several complex variables [Cho09, RS10] as well as to distributional
symbols. We end this section by recalling the following result, which is crucial to
our approach.

Theorem 1.6 (Alexandrov-Rosenblum). Let F be a compactly supported distribu-
tion on CN . If the matrix

[
F(z`z̄k)

]
`,k

has a finite rank, then the support of F
consists of finitely many points.

2. Some results on invariant Laplacian and radial derivative

In this section we establish some results associated with certain differential op-
erators on the unit ball. Besides playing a crucial role in our study of the Berezin
transform, these identities are also interesting in their own right.
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Ahern and Čučković [AČ01] and subsequently Ahern [Ahe04], Rao [Rao18] cru-
cially used the following property of the kernel function of the Berezin transform
(referred as a “marvelous identity” by Ahern)

∆z

( (1− |z|2)2

|1− zξ̄|4
)

= ∆ξ

( (1− |ξ|2)2

|1− zξ̄|4
)
.

The setting of several variables gets more complicated. We offer here several al-
ternative identities which are important in our proofs. We shall make use of the
following notation:

Ez =

N∑
j=1

zj
∂

∂zj
, Ēz =

N∑
j=1

z̄j
∂

∂z̄j
, ∆z =

N∑
j=1

∂2

∂zj∂z̄j
.

For any real number s, we write |Ez + s|2 = (Ez + s)(Ēz + s). We use Eξ, Ēξ, and
∆ξ to denote the corresponding operators acting on the variable ξ.

Lemma 2.1. For any integer m ≥ 1 and z, ξ ∈ BN , we have(
|Eξ +m|2 −∆ξ

)
· · · (|Eξ|2 −∆ξ)

{ 1

|1− 〈z, ξ〉|2
}

= |Ez|2
{ (m!)2(1− |z|2)m+1

|1− 〈z, ξ〉|2(m+1)

}
,

(2.1)

and(
|Eξ +m|2 −∆ξ

)
· · · (|Eξ|2 −∆ξ)

{ 1− |ξ|2

|1− 〈z, ξ〉|2
}

=
(
|Ez|2 −∆z

){ (m!)2(1− |z|2)m+1

|1− 〈z, ξ〉|2(m+1)

}
.

(2.2)

Proof. A direct calculation shows that

(|Eξ|2 −∆ξ)
{ 1

|1− 〈z, ξ〉|2
}

=
|〈z, ξ〉|2 − |z|2

|1− 〈z, ξ〉|4
= |Ez|2

{ 1− |z|2

|1− 〈z, ξ〉|2
}
, (2.3)

(
|Eξ|2 −∆ξ

){ 1− |ξ|2

|1− 〈z, ξ〉|2
}

=
(N − 1)|1− 〈z, ξ〉|2 + (1− |z|2)(1− |ξ|2)

|1− 〈z, ξ〉|4

=
(
|Ez|2 −∆z

){ 1− |z|2

|1− 〈z, ξ〉|2
}
, (2.4)

and for any real number s,(
|Eξ + s|2 −∆ξ

){ 1

|1− 〈z, ξ〉|2s
}

=
s2(1− |z|2)

|1− 〈z, ξ〉|2(s+1)
. (2.5)

Applying
(
|Eξ +m|2 −∆ξ

)
· · · (|Eξ + 1|2 −∆ξ) to (2.3) and using (2.5) repeatedly

for s = 1, . . . ,m give (2.1). Finally, applying the same operator to (2.4) and using
(2.5) give (2.2). �

We will use ∆̃, as usual, to denote the invariant Laplacian on C2(BN ) which
satisfies

∆̃ = (1− |z|2)(∆z − |Ez|2).

Recall that ∆̃ can also be defined using the ordinary Laplacian and automorphisms

of the unit ball. For more information on ∆̃ and its properties, see [Rud80, Chap-
ter 4]. However, the reader should be aware that the Laplacian defined there is
actually four times our Laplacian.
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Lemma 2.2. For any integer m ≥ 1 and z, ξ ∈ BN , we have

(1− |ξ|2)−m−1pm(∆̃ξ)

{
1− |ξ|2

|1− 〈z, ξ〉|2

}
= (|Ez|2 −∆z)

{
(1− |z|2)m+1

|1− 〈z, ξ〉|2(m+1)

}
,

(2.6)

where

pm(t) =
1

(m!)2

m∏
j=0

(
j(j −N)− t

)
.

As a consequence,

(m!)2(1− |ξ|2)−m−1pm(∆̃ξ) =
(
|Eξ +m|2 −∆ξ

)
· · · (|Eξ|2 −∆ξ). (2.7)

Proof. Put h(ξ) = 1 − |ξ|2. A direct but tedious calculation shows that for any
positive integer j ≥ 1,

j2 hj+1 =
(
j(j −N)− ∆̃

)
(hj),

which implies

hm+1 =
1

(m!)2

m∏
j=1

(
j(j −N)− ∆̃

)
(h).

Therefore,

−∆̃hm+1 =
1

(m!)2
(−∆̃)

m∏
j=1

(
j(j −N)− ∆̃

)
(h) = pm(∆̃)h.

Since both sides are radial functions that depend only on the modulus of the vari-
able, for any z, ξ ∈ BN , we have

−(∆̃hm+1) ◦ ϕξ(z) = (pm(∆̃)h) ◦ ϕz(ξ).

On the other hand, the invariance of ∆̃ under the automorphisms of BN gives

(∆̃hm+1) ◦ ϕξ(z) = ∆̃z(h
m+1 ◦ ϕξ(z)) = ∆̃z

(
(1− |ϕξ(z)|2)m+1

)
,

and

(pm(∆̃)h) ◦ ϕz(ξ) = pm(∆̃ξ)(h ◦ ϕz(ξ)) = pm(∆̃ξ)
(
1− |ϕz(ξ)|2

)
.

Consequently,

pm(∆̃ξ)
(

1− |ϕz(ξ)|2
)

= −∆̃z

(
(1− |ϕξ(z)|2)m+1

)
. (2.8)

Since

1− |ϕz(ξ)|2 = 1− |ϕξ(z)|2 =
(1− |z|2)(1− |ξ|2)

|1− 〈z, ξ〉|2

and −∆̃z = (1− |z|2)(|Ez|2 −∆z), the identity (2.6) now follows from (2.8).
From Lemma 2.1 and (2.6), we conclude that the differential operators on both

sides of (2.7) agree on functions of the form 1−|ξ|2
|1−〈z,ξ〉|2 for all z ∈ BN . Taking

partial derivatives in z, z̄ and setting z = 0, we see that the two operators agree
on all polynomials of the form (1− |ξ|2)q(ξ, ξ̄), where q is a polynomial. Since any
smooth functions on BN can be approximated by such polynomials (in the topology
of uniform convergence on compact sets of all derivatives up to order 2m+ 2), we
obtain the required identity. �
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We end the section with a result about singularities of L1-solutions to PDEs.
While we think this result may be known in the literature, due to the lack of an
appropriate reference, we provide here a proof. Let us first recall some notation.
For any distribution F and any function φ in the domain of F , we shall use 〈F , φ〉
to denote F(φ), the action of F on φ. For any differential operator L with smooth
coefficients, we use L∗ to denote its formal adjoint which satisfies

〈L∗(F), φ〉 = 〈F , L(φ)〉

for any distribution F and any function φ in the domain of F .

Proposition 2.3. Let L be a differential operator of order µ with smooth coeffi-
cients on Rn. Suppose u ∈ L1(Rn) having a compact support such that the distri-
bution L(u) is supported at finitely many points. Then the order of L(u) is at most
µ− 1.

Remark 2.4. For a general function u, the distribution L(u) may have order µ.
The point here is that if the support of L(u) has only finitely many elements, then
its order must be strictly smaller than µ.

Proof. Let Dj = −i ∂j and D = (D1, . . . , Dn). Write the adjoint operator L∗ in
the form

L∗ =
∑
|α|≤µ

cα(x)Dα, (2.9)

where each cα is smooth. Since u has a compact support, the Fourier transform of
L(u) can be computed by

F{L(u)}(ζ) =

∫
Rn
u(x)L∗x(e−i〈ζ,x〉)dx

=
∑
|α|≤µ

ζα
∫
Rn
u(x)cα(x)e−i〈ζ,x〉dx

=
∑
|α|≤µ

ζαF{ucα}(ζ).

Because cα is locally bounded, the function ucα belongs to L1(Rn). As a conse-
quence, F{ucα}(ζ)→ 0 as |ζ| → ∞. It follows that for any ζ ∈ Rn\{0},

lim
t→∞

F{L(u)}(tζ)

tµ
= 0. (2.10)

Now let {a1, . . . , as} be the support of L(u). Then there are differential operators
L1, . . . , Ls with constant coefficients such that

L(u) =

s∑
j=1

Lj(δaj ),

where δa denotes the Dirac distribution at a. Since L(u) has order at most µ, each
Lj has order at most µ as well. As a result, there are homogeneous polynomials pj



BROWN–HALMOS TYPE THEOREMS ON THE BALL 9

of degree µ such that Lj = pj(D) + lower order derivatives. We then have

F{L(u)}(ζ) =

s∑
j=1

F{Lj(δaj )}(ζ)

=

s∑
j=1

e−i〈ζ,aj〉 ·
(
pj(ζ) + lower order terms in ζ

)
.

It now follows from (2.10) that

lim
t→∞

s∑
j=1

e−it〈ζ,aj〉pj(ζ) = 0 (2.11)

for all ζ ∈ Rn\{0}.
Claim: for all ζ ∈ Rn such that 〈ζ, aj〉 6= 〈ζ, ak〉 for all j 6= k, (2.11) forces

pj(ζ) = 0.
Since the set of all ζ in the claim is dense in Rn, we conclude that pj = 0 and

hence Lj is of order at most µ− 1 for all j. Consequently, L(u) has order at most
µ− 1.

Proof of the claim. We believe that the claim should be well known but we sketch
here a proof. To simplify the notation, put λj = −〈ζ, aj〉 and bj = pj(ζ). Note that
the values λ1, . . . , λs are pairwise distinct so there exists a real number c such that
eiλ1c, . . . , eiλsc are pairwise distinct. Define f(t) =

∑s
j=1 bje

iλjt for t ∈ R. Then

(2.11) gives limt→∞ f(t) = 0 and hence, limt→∞ f(t + `c) = 0 for all 0 ≤ ` ≤ s.
Note that

f(t+ `c) =

s∑
j=1

(eiλjc)`bje
iλjt

so each bje
iλjt can be expressed as a linear combination of f(t), f(t+ c), . . . , f(t+

(s − 1)c) via Vandermonde determinant. It then follows that for each 1 ≤ j ≤ s,
we have limt→∞ bje

iλjt = 0, which implies bj = 0. �

3. Finite rank Berezin transform

The goal of this section is to study finite rank Berezin transform B(u), which
can be written in the form B(u) =

∑n
j=1 fj ḡj for holomorphic functions fj and gj .

To simplify the notation, we define the following differential operator which plays
an important role in our proof

D = (1− |ξ|2)−(N+1)
N∏
j=0

(
j(j −N)− ∆̃

)
.

Despite the rational factor (1− |ξ|2)−(N+1), the operator D is in fact a differential
operator with polynomial coefficients. Indeed, by Lemma 2.2, we have

D = (1− | · |2)−(N+1)pN (∆̃) = (|E +N |2 −∆) · · · (|E|2 −∆).

Since the adjoint operator of E + s is −E + s−N , the differential operator D is
self-adjoint in the sense that for any distribution φ on CN with a compact support
and any ψ ∈ C∞(CN ),

〈D(φ), ψ〉 = 〈φ,D(ψ)〉.
For a distribution L on CN , we say that L is finitely supported (or L has a finite

support) if its support is a finite set. It is well known that there then exist finitely
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many points q1, . . . , qm ∈ CN and differential operators with constant coefficients
Lj , such that L =

∑m
j=1 Lj(δqj ), where δq denotes the point mass distribution at

q ∈ CN .
For a function u ∈ L1(BN ), we use uχBN to denote the corresponding tempered

distribution on CN defined as

φ 7→
∫
BN

u(ξ)φ(ξ) dV (ξ), φ ∈ C∞(CN ).

The proof of Theorem 1.4 is divided into several steps. We are now ready to
prove the first part and statement (a) in the theorem.

Proposition 3.1. Let u ∈ L1(BN ) such that B(u) has a finite rank. Then there
exists a finite set Λ ⊂ BN , a collection {Pw : w ∈ Λ} of polynomials in z and z̄ of
total degree at most 2N + 1, and a pluriharmonic function h such that for z ∈ BN ,

B(u)(z) = h(z) +
∑
w∈Λ

Pw

( z

1− 〈z, w〉

)
.

If, furthermore, u also belongs to C2N+2(BN ), then Λ ⊂ ∂BN , the unit sphere.

Proof. Recall the formula for the Berezin transform

B(u)(z) =

∫
BN

u(ξ)
(1− |z|2)N+1

|1− 〈z, ξ〉|2(N+1)
dV (ξ).

Applying (N !)2|Ez|2 to both sides and using Lemma 2.1, we conclude that

(N !)2|Ez|2(B(u)(z)) =

∫
BN

u(ξ)Dξ
{ 1

|1− 〈z, ξ〉|2
}
dV (ξ) (3.1)

=

∫
BN

u(ξ)
∑
k,l

(
|k|
k

)(
|l|
l

)
zkz̄lDξ(ξ̄kξl) dV (ξ)

=
∑
k,l

{(|k|
k

)(
|l|
l

)∫
BN

u(ξ)Dξ(ξ̄kξl) dV (ξ)
}
zkz̄l. (3.2)

Since B(u) is real analytic, we may write

B(u)(z) =
∑
k,l

ak,lz
kz̄l,

which implies

|Ez|2(B(u)(z)) =
∑
k,l

|k||l|ak,lzkz̄l.

It follows that B(u) has a finite rank if and only if |Ez|2(B(u)) has a finite rank.
Using (3.2), we conclude that

B(u) has finite rank ⇐⇒
[(|k|

k

)(
|l|
l

)∫
BN

u(ξ)Dξ(ξ̄kξl) dV (ξ)
]
k,l

has finite rank

⇐⇒
[ ∫

BN
u(ξ)Dξ(ξ̄kξl) dV (ξ)

]
k,l

has finite rank.

Applying Theorem 1.6 with the distribution F = D(uχBN ) given as

F(φ) = 〈D(uχBN ), φ〉 =

∫
BN

u(ξ)D(φ)dV (ξ)
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for φ ∈ C∞(CN ), we see that B(u) has a finite rank if and only if D(uχBN ) is a
finitely supported distribution. In particular, D(u) = 0 for all except finitely many
points on BN . Since the differential operator |E2|−∆ is elliptic on BN , the operator
D is also elliptic. It follows that u is real analytic except at finitely many points on
BN .

Let {w1, . . . , ws} ⊂ BN be the support ofD(uχBN ). By Proposition 2.3, D(uχBN )
has order at most 2N + 1 since D is a differential operator of order 2N + 2. From
formula (3.1), we see that there are complex constants aj,α,β for 1 ≤ j ≤ s and
|α|+ |β| ≤ 2N + 1 such that

|Ez|2(B(u)(z)) = D(uχBN )
{ 1

|1− 〈z, ·〉|2
}

=
∑

1≤j≤s
|α|+|β|≤2N+1

aj,α,β
zαz̄β

(1− 〈z, wj〉)1+|α|(1− 〈wj , z〉)1+|β| . (3.3)

A direct calculation shows that for any w ∈ BN and |α|, |β| ≥ 1,

1

1− 〈z, w〉
− 1 =

〈z, w〉
1− 〈z, w〉

= Ez

{
log

1

1− 〈z, w〉

}
,

zα

(1− 〈z, w〉)1+|α| = Ez

{ 1

|α|
zα

(1− 〈z, w〉)|α|
}
.

Thus, for such α, β, the functions

zαz̄β

(1− 〈z, w〉)1+|α| (1− 〈w, z〉)1+|β| ,

( 1

1− 〈z, w〉
− 1
) z̄β

(1− 〈w, z〉)1+|β| ,
zα

(1− 〈z, w〉)1+|α|

( 1

1− 〈w, z〉
− 1
)

belong to the range of |Ez|2. Hence, the identity (3.3) implies that the plurihar-
monic function∑

1≤j≤s
|α|≥1

aj,α,0
zα

(1− 〈z, wj〉)1+|α| +
∑

1≤j≤s
|β|≥1

aj,0,β
z̄β

(1− 〈wj , z〉)1+|β|

+
∑

0≤j≤s

aj,0,0

( 1

1− 〈z, wj〉
+

1

1− 〈wj , z〉
− 1
)

is the image, under |Ez|2, of a real analytic function. Using power series, we see
that zero is the only pluriharmonic function belonging to the range of |Ez|2. It then
follows that for all j, we have aj,α,β = 0 whenever |α| = 0 or |β| = 0. Consequently,

|Ez|2(B(u)) =
∑

1≤j≤s
|α|≥1,|β|≥1

aj,α,β
zαz̄β

(1− 〈z, wj〉)1+|α|(1− 〈wj , z〉)1+|β|

= |Ez|2
{ ∑

1≤j≤s
|α|≥1,|β|≥1

aj,α,β
|α| |β|

zαz̄β

(1− 〈z, wj〉)|α|(1− 〈wj , z〉)|β|
}
,
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which gives

B(u)(z) = h(z) +
∑

1≤j≤s
|α|≥1,|β|≥1

aj,α,β
|α| |β|

zαz̄β

(1− 〈z, wj〉)|α|(1− 〈wj , z〉)|β|
,

for some pluriharmonic function h on BN . Defining

Pj(z) =
∑

|α|≥1,|β|≥1
|α|+|β|≤2N+1

aj,α,β
|α| |β|

zαz̄β ,

we obtain the required representation for B(u).
If u is 2N + 2 times differentiable on BN , then the support of D(uχBN ), being a

finite set of points, must be contained on the unit sphere. As a result, |wj | = 1 for
all 1 ≤ j ≤ s. �

From the proof of Proposition 3.1 we have the following result which might be
of independent interest.

Corollary 3.2. Let u ∈ L1(BN ) be of the form u =
∑n
j=1 fj ḡj with holomorphic

fj , gj. If u is an eigenfunction of the invariant Laplacian with eigenvalue λ, then
λ = j(j −N) for some j ∈ {0, 1, . . . , N}.

Proof. It is well known [Rud80, Theorem 4.2.4] that eigenfunctions of ∆̃ are also
eigenfunctions of B. Therefore, B(u) has a finite rank. From the proof of Proposi-
tion 3.1 as above, we have that D(u) = 0 on BN . The desired result is immediate
from the definition of D, which we recall here as

D = (1− |ξ|2)−(N+1)
N∏
j=0

(
j(j −N)− ∆̃

)
. �

Applying Proposition 3.1 to the case where u belongs to L2N+2(BN ), we prove
statement (b) in Theorem 1.4.

Proposition 3.3. Suppose u ∈ L2N+2(BN ) and B(u) has a finite rank. Then there
exist finitely many points w1, . . . , ws ∈ BN , polynomials Q1, . . . , Qs in C[z, z̄] with
total degrees at most 2N + 1, and a pluriharmonic function h such that

B(u)(z) = h(z) +

s∑
j=1

Qj ◦ ϕwj (z).

Proof. We know that there exist holomorphic functions h1, h2 on BN and finitely
many points w1, . . . , ws ∈ BN such that

B(u)(z) = h1(z) + h̄2(z) +
∑

1≤j≤s
1≤|β|≤2N

Qj,β

( z

(1− 〈z, wj〉)

)
· z̄β

(1− 〈wj , z〉)|β|
, (3.4)

where each Qj,β is a holomorphic polynomial of degree at most 2N + 1− |β| with
Qj,β(0) = 0. We prove first that Qj,β = 0 whenever |wj | = 1.

Complexifying (3.4) gives

B(u)(z, ζ)− h̄2(ζ) = h1(z) +
∑

1≤j≤s
1≤|β|≤2N

Qj,β

( z

(1− 〈z, wj〉)

)
· ζ̄β

(1− 〈wj , ζ〉)|β|
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for all z, ζ ∈ BN , where we define

B(u)(z, ζ) = (1− 〈z, ζ〉)N+1

∫
BN

u(ξ)

(1− 〈z, ξ〉)N+1(1− 〈ξ, ζ〉)N+1
dV (ξ)

Since the set

{1} ∪
{ ζ̄β

(1− 〈wj , ζ〉)|β|
: 1 ≤ |β| ≤ 2N, 1 ≤ j ≤ s

}
is linearly independent, it follows that each Qj,β( z

1−〈z,wj〉 ) can be written as a linear

combination of finitely many functions in the set{
B(u)(·, ζ)− h̄2(ζ) : ζ ∈ BN

}
.

Note that for each ζ ∈ BN , the function B(u)(z, ζ) is the product of (1−〈z, ζ〉)N+1

with the Bergman projection of u(ξ)(1−〈ξ, ζ〉)−N−1, which belongs to L2N+2(BN )
by the assumption about u. It is well known that the Bergman projection maps
Lp(BN ) into itself for 1 < p <∞. Therefore, the function B(u)(·, ζ)− h̄2(ζ) belongs
to L2N+2(BN ). This implies that each Qj,β( z

1−〈z,wj〉 ) belongs to L2N+2(BN ). By

Lemma 3.5, for any j with wj on the unit sphere, Qj,β must be constant, hence,
identically zero since Qj,β vanishes at the origin. As a result, we may assume that
|wj | < 1 for all 1 ≤ j ≤ s.

To complete the proof, we show that for ω ∈ BN and 1 ≤ j ≤ N , the rational
function

zj
1−〈z,ω〉 is a linear combination of 1 and the components of ϕw(z). The

required representation then follows from (3.4).
For z, ζ ∈ BN , [Rud80, Theorem 2.2.2] provides the identity

1− 〈ϕω(z), ϕω(ζ)〉 =
(1− |ω|2)(1− 〈z, ζ〉)

(1− 〈z, ω〉)(1− 〈ω, ζ〉)
,

which is equivalent to

1− 〈z, ζ〉
1− 〈z, ω〉

=
1− 〈ω, ζ〉
1− |ω|2

(
1− 〈ϕω(z), ϕω(ζ)〉

)
.

Setting ζ = 0 then ζ = ej and subtracting the two quantities, we have

zj
1− 〈z, ω〉

=
ωj

1− |ω|2
+

1

1− |ω|2
〈ϕω(z),−ω + (1− ωj)ϕω(ej)〉.

Note that the right hand-side is an affine function in ϕω(z). As a consequence, for
any multi-indexes α and β, the rational function

zαz̄β

(1− 〈z, ω〉)|α|(1− 〈ω, z〉)|β|

is a polynomial in ϕω(z) and ϕω(z) of total degree |α|+ |β|. �

We now obtain a proof of statement (c) in Theorem 1.4.

Proposition 3.4. Suppose u ∈ L1(BN ) and B(u) = f1ḡ1 + · · · + fdḡd, where
f`, g` ∈ H(BN ) and f` ∈ L2N+2(BN ) for each `. Then there exist finitely many
points w1, . . . , ws ∈ BN , polynomials Q1, . . . , Qs in C[z, z̄] with total degrees at
most 2N + 1, and a pluriharmonic function h such that

B(u)(z) = h(z) +

s∑
j=1

Qj ◦ ϕwj (z).
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Proof. We know that there exist holomorphic functions h1, h2 on BN and finitely
many points w1, . . . , ws ∈ BN and holomorphic polynomials Qj,β of degree at most
2N + 1− |β| with Qj,β(0) = 0 such that

h1(z) + h̄2(z) +
∑

1≤j≤s

1≤|β|≤2N

Qj,β

( z

(1− 〈z, wj〉)

)
· z̄β

(1− 〈wj , z〉)|β|

= B(u)(z)

= f1(z) g1(z) + · · ·+ fd(z) gd(z).

Complexifying as in the proof of Theorem 3.3 shows that each Qj,β
(

z
1−〈z,wj〉

)
be-

longs to the linear span of

{1} ∪
{
g1(ζ) f1 + · · ·+ gs(ζ) fs : ζ ∈ BN

}
,

which is contained in L2N+2(BN ) by the hypothesis. Now the same argument as in
the proof of Theorem 3.3 may be used to finish the proof. �

Lemma 3.5. Let Q be a polynomial in C[z1, . . . , zN ]. If Q
(

z
1−〈z,ω〉

)
belongs to

L2N+2(BN ) for some ω on the unit sphere, then Q is a constant.

Proof. Since the case of a single complex variable may be regarded as a special
case of two or more variables, we consider N ≥ 2 throughout the proof. Without
loss of generality, we may assume that ω = (0, . . . , 0, 1). We write z[N−1] to denote

(z1, . . . , zN−1) ∈ CN−1. Then Q can be written as

Q(z) =
∑
|α|≥0

Qα(zN ) zα[N−1],

where the sum is finite over α ∈ ZN−1
+ and each Qα is a holomorphic polynomial

in zN . We have

F (z) = Q
( z

1− 〈z, ω〉

)
=
∑
|α|≥0

Qα

( zN
1− zN

) zα[N−1]

(1− zN )|α|
.

Since F belongs to L2N+2(BN ), for each α, the function

Fα(z) = Qα

( zN
1− zN

) zα[N−1]

(1− zN )|α|

=

∫
[0,2π]N−1

F (eiθ1z1, . . . , e
iθN−1zN−1, zN )e−i(α1θ1+···+αN−1θN−1) dθ1

2π
· · · dθN−1

2π

must belong to L2N+2(BN ). However, for |α| ≥ 1, if Qα is not identically zero, then
for z near (0, . . . , 0, 1), we see that |Fα(z)| dominates a nonzero constant multiple

of
∣∣ zα[N−1]

(1−zN )|α|

∣∣. It can be showed, using the techniques in [Rud80, Section 1.4],

that such functions do not belong to L2N+2(BN ). On the other hand, if Q0 is
not a constant, then for z near (0, . . . , 0, 1), |F0(z)| = |Q0(z)| dominates a nonzero
constant multiple of | 1

1−zN |, which again does not belong to L2N+2(BN ). As a

consequence, Qα = 0 for all |α| ≥ 1 and Q0 is a constant. Therefore, Q is a
constant, as desired. �
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Besides its important applications in the theory of Toeplitz operators as we shall
see in the next section, Theorem 1.4 also helps answer open questions about M-
harmonic functions. In the early nineties, Ahern and Rudin [AR91] completely
characterized holomorphic functions f, g on the ball for which fḡ is M-harmonic.
Nearly a decade later, Zheng [Zhe98] showed that for f, g, h and k belonging to the
Hardy space H2N (∂BN ), the function fḡ − hk̄ is M-harmonic if and only if it is
pluriharmonic. About ten years ago, making use of Ahern–Rudin’s characterization,
Choe et al. [CKL11, Lemma 4.5] proved a single-product version of Zheng’s result
under a slightly weaker hypothesis. They only assumed that one of the factor
belongs to H2N (∂BN ). The problem of generalizing this and Zheng’s result to
finite sums of more than two products has been opened since then, see [CKL11,
Question 6.1]. Our Theorem 1.4 offers a far-reaching answer.

Theorem 3.6. Suppose for each 1 ≤ j ≤ s, the functions fj , gj are holomorphic

on BN and fj belongs to A2N+2(BN ). If u =
∑s
j=1 fj ḡj is an eigenfunction of ∆̃,

then u must be pluriharmonic.

Proof. By [Rud80, Theorem 4.2.4], u is an eigenfunction of the Berezin transform,
that is, there exists λ ∈ C such that

B(u) = λu =

s∑
j=1

λfj ḡj .

Since u is clearly a C2N+2-function and fj ∈ A2N+2(BN ) for all j, Theorem 1.4
parts (a) and (c) hold, which implies that u is pluriharmonic. A careful examination
of the proof of Theorem 1.4(c) (see Proposition 3.4 and Lemma 3.5) shows that the
conclusion also holds if A2N+2(BN ) is replaced by H2N (∂BN ). �

4. Brown–Halmos type results

We first recall the following standard lemma characterizing when a function of
the form

∑
j ḡjuj (with holomorphic gj , uj) is pluriharmonic. The one-dimensional

version was already proved in [CKL08, Theorem 3.3] but our proof here is much
simpler.

Lemma 4.1. Let u1, . . . , us and g1, . . . , gs be holomorphic functions on BN . Then∑s
j=1 ḡjuj is pluriharmonic on BN if and only if

s∑
j=1

(
gj − gj(0)

)(
uj − uj(0)

)
= 0,

which is equivalent to
s∑
j=1

ḡjuj =

s∑
j=1

(
ḡjuj(0) + gj(0)uj − gj(0)uj(0)

)
.

Proof. Without loss of generality, we may assume that uj(0) = gj(0) = 0 for all j.
Using power expansions, we have

s∑
j=1

uj(z)ḡj(z) =
∑

|α|≥1,|β|≥1

cα,βz
αz̄β ,

which is pluriharmonic if and only if it is identically zero. �
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We are now ready to prove Theorem 1.1, which is restated below for the reader’s
convenience.

Theorem 4.2. Let φj , ψj for 1 ≤ j ≤ n be bounded pluriharmonic functions and
h be a C2N+2 bounded function on BN . Let x`, y` ∈ A2(BN ) for 1 ≤ ` ≤ r. Write
φj = fj + ḡj , ψj = uj + v̄j where fj , gj , uj , vj are holomorphic. Then

n∑
j=1

TφjTψj = Th +

r∑
`=1

x` ⊗ y` (4.1)

if and only if h−
∑n
j=1 ḡjuj is pluriharmonic and

n∑
j=1

φjψj = h+ (1− |z|2)N+1
r∑
`=1

x`ȳ`. (4.2)

Proof. For any functions x, y ∈ A2(BN ), we compute the Berezin transform

B(x⊗ y)(z) = (1− |z|2)N+1x(z) y(z), z ∈ BN .

Also, if φ = f + ḡ and ψ = u + v̄ are bounded pluriharmonic, where f, g, u, v are
holomorphic functions (which might not be bounded but they all belong to Lp(BN )
for all p), then it is well known that

B(TφTψ) = φψ − ḡu+B(ḡu).

Therefore,

B
( n∑
j=1

TφjTψj − Th
)

=

n∑
j=1

(φjψj − ḡjuj) +B
( n∑
j=1

ḡjuj − h
)
.

Using the linearity and injectivity of the Berezin transform, we conclude that (4.1)
holds if and only if

B
( n∑
j=1

TφjTψj − Th
)

=

r∑
`=1

B
(
x` ⊗ y`

)
,

which is equivalent to

B
( n∑
j=1

ḡjuj − h
)

=

n∑
j=1

(−φjψj + ḡjuj) + (1− |z|2)N+1
r∑
`=1

x`ȳ`. (4.3)

We now show that this equation is equivalent to the two conditions stated in the
theorem. Put u =

∑n
j=1 ḡjuj −h. Suppose first that (4.3) holds. Then the Berezin

transform B(u) has finite rank. Since u belongs to C∞(BN )∩L2N+2(BN ), Theorem
1.4 implies that it is pluriharmonic on BN and B(u) = u. As a consequence,
h−

∑n
j=1 ḡjuj is pluriharmonic and

n∑
j=1

ḡjuj − h =

n∑
j=1

(−φjψj + ḡjuj) + (1− |z|2)N+1
r∑
`=1

x`ȳ`,

which means

h =

n∑
j=1

φjψj − (1− |z|2)N+1
r∑
`=1

x` y`. (4.4)
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Conversely, if u is pluriharmonic and (4.4) holds, then using the fact that the Berezin
transform fixes pluriharmonic functions, we conclude that (4.3) holds, which implies
(4.1) as desired. �

Remark 4.3. In this remark, we discuss a construction of functions that satisfy the
two conditions in Theorem 4.2. As before, write φj = fj + ḡj , ψj = uj + v̄j , where
fj , gj , uj , vj are holomorphic and fj(0) = vj(0) = 0. Assume that (4.2) holds, then

h−
n∑
j=1

ḡjuj =

n∑
j=1

(fj v̄j + fjuj + ḡj v̄j)− (1− |z|2)N+1
r∑
`=1

x`ȳ`,

which, by Lemma 4.1, is pluriharmonic if and only if
n∑
j=1

fj v̄j − (1− |z|2)N+1
r∑
`=1

x`ȳ` =

r∑
`=1

−x`(0)ȳ` − x` y`(0) + x`(0)y`(0).

The above identity is equivalent to
n∑
j=1

fj(z)v̄j(z) =

r∑
`=1

{(
x`(z)− x`(0)

)(
ȳ`(z)− y`(0)

)
(4.5)

+
∑

1≤|α|≤N+1

(−1)|α|
(
|α|
α

)(
zαx`(z)

)(
zαy`(z)

)}
.

Let x`, y` (1 ≤ ` ≤ r) be any finite collection of bounded holomorphic functions.
We can easily choose bounded holomorphic functions fj , vj (1 ≤ j ≤ n) for some n
such that fj(0) = vj(0) = 0 and (4.5) holds. For each j, choose arbitrary bounded
holomorphic functions gj and uj and set φj = f + ḡj and ψj = uj + v̄j . Put

h =

n∑
j=1

φjψj − (1− |z|2)N+1
r∑
`=1

x`ȳ`.

We then have
n∑
j=1

TφjTψj = Th +

r∑
`=1

x` ⊗ y`.

The problem becomes more delicate if one imposes a restriction on n. The recent
paper [DQZ17] considered the case n = 1 in the setting of a single variable. It
was shown that for bounded harmonic functions φ, ψ, and smooth h, if TφTψ − Th
has rank one, then it must be zero. On the other hand, for any r ≥ 2, examples
were constructed so that TφTψ − Th has rank exactly r. It would be interesting to
generalize the results in [DQZ17] to the setting of several variables.

Proof of Corollary 1.2. Write φ = f + ḡ, ψ = u+ v̄ with holomorphic f, g, u, v and
f(0) = v(0) = 0.

(a) By Theorem 1.1, if TφTψ = Th, then h = φψ and h − ḡu is pluriharmonic.
It follows that fv̄ = (h− ḡu)− fu− ḡv̄ is pluriharmonic. Lemma 4.1 implies that
fv̄ = 0 which forces either f = 0 or v = 0. Therefore, either φ̄ or ψ must be
holomorphic.

(b) Now suppose that TφTψ has a finite rank. Then there exist functions x`, y` ∈
A2(BN ), 1 ≤ ` ≤ r so that TφTψ =

∑
` x` ⊗ y`. Using Theorem 1.1 with h = 0,

we obtain that φψ = (1− |z|2)N+1
∑
` x`ȳ`, and ḡu is pluriharmonic, which implies

either g or u is constant. Therefore, either φ or ψ̄ is holomorphic. Taking operator
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adjoints if necessary, we may assume that φ is holomorphic. Assume further that φ
is not identically zero. Then Tφ is injective. Since TφTψ has a finite rank, it follows
that Tψ must have a finite rank, hence ψ = 0, by the multivariable Luecking’s
Theorem. �

We now apply Theorem 1.1 to characterize when a sum of products of Hankel
operators with pluriharmonic symbols has a finite rank. Recall that for a bounded
symbol φ, the Hankel operator Hφ : A2(BN )→ L2(BN )	A2(BN ) is defined as Hφ =
(I − P )Mφ|A2(BN ), where Mφ is the multiplication by φ and P is the orthogonal

projection from L2(BN ) onto A2(BN ). The crucial identity relating properties of
Toeplitz and Hankel operators is given by

H∗φ̄Hψ = Tφψ − TφTψ.

Proposition 4.4. Let φj , ψ for 1 ≤ j ≤ n be bounded pluriharmonic functions on
BN . Then the followings are equivalent:

(1)
∑n
j=1H

∗
φ̄j
Hψj = 0.

(2)
∑n
j=1H

∗
φ̄j
Hψj = TF for some F ∈ C2N+2(BN ) ∩ L∞(BN ).

(3)
∑n
j=1H

∗
φ̄j
Hψj has a finite rank.

(4)
∑n
j=1 P (φj) · (ψj − P (ψj)) is pluriharmonic.

Proof. It is clear that (1) implies (2). Now assume that (2) holds. Then
n∑
j=1

TφjTψj =

n∑
j=1

(Tφjψj −H∗φ̄jHψj ) = Th − TF = Th−F ,

where h =
∑n
j=1 φjψj . By Theorem 1.1, we have

n∑
j=1

φjψj = h− F,

which implies F = 0. Therefore, (3) (and (1) as well) follow.
Now assume that (3) holds, that is, the operator T =

∑n
j=1H

∗
φ̄j
Hψj has finite

rank. The same argument as above gives
∑n
j=1 TφjTψj = Th − T . By Theorem 1.1

again, the function

h−
n∑
j=1

(φj − P (φj))P (ψj)

is pluriharmonic, which then implies (4).
Finally, assume that (4) holds. Setting h =

∑n
j=1 φjψj and x` = y` = 0, we see

that both conditions in Theorem 1.1 are satisfied and so
∑n
j=1 TφjTψj = T∑n

j=1 φjψj
,

which gives (1). This completes the proof of the proposition. �

Proof of Corollary 1.3. The sufficient direction is well known and not difficult to
prove. To show the necessary direction, replacing φ by φ−φ(0) and ψ by ψ−ψ(0)
if necessary, we may assume that φ(0) = ψ(0) = 0. As before, write φ = f + ḡ and
ψ = u+ v̄ with holomorphic f, g, u, v satisfying f(0) = g(0) = u(0) = v(0) = 0. We
have

H∗φ̄Hψ −H∗ψ̄Hφ = (Tφψ − TφTψ)− (Tψφ − TψTφ) = −[Tφ, Tψ].

Therefore, if [Tφ, Tψ] is of finite rank, then by Proposition 4.4,

P (φ)(ψ − P (ψ))− P (ψ)(φ− P (φ)) = fv̄ − uḡ
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is pluriharmonic. We may apply [Zhe98, Theorem 5.6 and Lemma 6.8] to complete
the proof. Here, we provide a direct argument. Indeed, Lemma 4.1 implies fv̄ = uḡ
which, by complexifying, gives

f(z)v̄(w) = u(z)ḡ(w) for all z, w ∈ BN .

If u = v = 0, then ψ = cφ with c = 0. If u = 0 and v is not identically zero,
then f = 0 so both φ and ψ are anti-holomorphic. Similarly, if v = 0 and u is
not identically zero, then g = 0 so both φ and ψ are holomorphic. On the other
hand, if neither of u nor v is identically zero, then there exists z0 ∈ BN such that
u(z0)v(z0) 6= 0 and it follows that f = cu and ḡ = cv̄, where

c =
ḡ(z0)

v̄(z0)
=
f(z0)

u(z0)
.

Hence, φ− cψ = 0. This completes the proof of the corollary. �

We end this section with another important application of Theorem 1.1.

Corollary 4.5. Let φj , ψj ∈ L∞(BN ) be pluriharmonic functions and let h ∈
L1(BN ) be locally bounded if N = 1, and C2N+2-smooth and bounded if N ≥
2. Write φj = fj + ḡj , ψj = uj + v̄j where fj , gj , uj , vj are holomorphic. Then∑n
j=1 TφjTψj = Th if and only if h =

∑n
j=1 φjψj and∑

j

(
fj − fj(0)

)(
v̄j − vj(0)

)
= 0.

For N > 1, Corollary 4.5 follows immediately from Theorem 1.1 and Lemma 4.1.
The proof in the case N = 1 goes along the same lines except that we use Rao’s
theorem which shows that for a locally bounded function u, the Berezin transform
B(u) has finite rank if and only if u is harmonic.

5. Polynomials in the range of Berezin transform and applications

In this section we first describe all polynomials in the range of the Berezin
transform. We then construct examples which show that the conclusion of Theorem
1.1 may fail for N ≥ 2 if the smoothness assumption on h is dropped. Lastly, we
show that the product of two Toeplitz operators with polynomial symbols, under
a certain additional condition on the degrees, is always equal to another Toeplitz
operator with an integrable symbol.

In the setting of a single variable, Ahern [Ahe04] showed that if p and q are
holomorphic polynomials such that the degree of pq is at most 3, then pq̄ is the
Berezin transform of an L1-function. The following theorem generalizes this result
to several variables. Since calculations cannot be performed explicitly as in the
single variable case, the proof here is considerably more complicated.

Theorem 5.1. Let f be a polynomials in z and z̄. Then f = B(u) for some
u ∈ L1(BN ) if and only if for any 1 ≤ j, ` ≤ N , the derivative ∂zj ∂̄z`f has total
degree at most 2N − 1.

As a consequence, if w1, . . . , ws belongs to BN and Q1, . . . , Qs are polynomials in
C[z, z̄] with total degrees at most 2N + 1, then there exists a function u ∈ L1(BN )
such that B(u) =

∑s
j=1Qj ◦ ϕwj .
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Proof. Throughout the proof, we write ran(B) to denote the image of L1(BN ) under
the Berezin transform. Suppose that f = B(u) for some u ∈ L1(BN ). By Theorem
3.4, there exists a pluriharmonic function h and a polynomial Q ∈ C[z, z̄] of degree
at most 2N + 1 such that f = B(u) = h+Q. It follows that for any 1 ≤ j, ` ≤ N ,

∂zj ∂̄z`f = ∂zj ∂̄z`h+ ∂zj ∂̄z`Q = ∂zj ∂̄z`Q,

which has total degree at most 2N − 1.
Conversely, suppose that for any 1 ≤ j, ` ≤ N , the derivative ∂zj ∂̄z`f has total

degree at most 2N − 1. Since f is a polynomial, there exists a pluriharmonic
polynomial h and complex coefficients cα,β for |α| ≥ 1, |β| ≥ 1 such that

f(z) = h(z) +
∑

|α|≥1,|β|≥1

cα,βz
αz̄β .

The assumption implies that cα,β = 0 whenever |α|+ |β| > 2N + 2. Consequently,
we may write f = h+Q, where h is pluriharmonic and Q has total degree at most
2N + 1. Thus, it remains to show that Q belongs to ran(B).

Let α, β be two multiindexes and ` be a non-negative integer such that |α| +
|β| + 2` ≤ 2N + 1. We shall show that the polynomial z̄αzβ(1 − |z|2)` belongs to
ran(B). Taking complex conjugates if necessary, we may assume that |β| ≤ |α|.

Using [Rud80, Proposition 1.4.9] and the rotation invariant of the surface mea-
sure on ∂BN , we see that for any integer s ≥ 1 and for any z ∈ BN ,∫

∂BN
|〈z, ζ〉|2sdσ(ζ) =

Γ(N) Γ(s+ 1)

Γ(N + s)
|z|2s.

Replacing s by s+ |α| and applying
∂αz

(s+|α|)···(s+1) to both sides of the above identity

gives ∫
∂BN

ζ̄α〈z, ζ〉s〈ζ, z〉s+|α|dσ(ζ) =
Γ(N) Γ(s+ |α|+ 1)

Γ(N + s+ |α|)
z̄α|z|2s.

Applying Γ(s+|α|−|β|+1)
Γ(s+|α|+1) ∂̄βz , we have∫

∂BN
ζ̄αζβ〈z, ζ〉s〈ζ, z〉s+|α|−|β|dσ(ζ) =

Γ(N) Γ(s+ |α| − |β|+ 1)

Γ(N + s+ |α|)
∂̄βz

(
z̄α|z|2s

)
.

Now let u ∈ L1(BN ) be of the form u(z) = z̄αzβϕ(|z|2), where ϕ is a function on
[0, 1) to be defined later. Integration in polar coordinates (using ξ = rζ) together
with the above identity gives∫

BN
ξ̄αξβϕ(|ξ|2)〈z, ξ〉s〈ξ, z〉s+|α|−|β|dV (ξ)

= 2N

∫ 1

0

r2N+2s+2|α|−1ϕ(r2)dr

∫
∂BN

ζ̄αζβ〈z, ζ〉s〈ζ, z〉s+|α|−|β|dσ(ζ)

=
Γ(N + 1) Γ(s+ |α| − |β|+ 1)

Γ(N + s+ |α|)

(∫ 1

0

rN+s+|α|−1ϕ(r)dr
)
∂̄βz
(
z̄α|z|2s

)
=

Γ(N + 1) Γ(s+ |α| − |β|+ 1)

Γ(N + s+ |α|)
ϕ̂(N + s+ |α|) ∂̄βz

(
z̄α|z|2s

)
,

where ϕ̂ denotes the Mellin transform of ϕ given by

ϕ̂(ζ) =

∫ 1

0

rζ−1ϕ(r)dr.
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It follows that

1

Γ(N + 1) Γ(s+ |α| − |β|+ 1)

∫
BN

u(ξ)〈z, ξ〉s〈ξ, z〉s+|α|−|β|dV (ξ)

=
1

Γ(N + s+ |α|)
ϕ̂(N + s+ |α|) ∂̄βz

(
z̄α|z|2s

)
. (5.1)

We now compute, for z ∈ BN ,∫
BN

u(ξ)

|1− 〈z, ξ〉|2(N+1)
dV (ξ)

=

∞∑
s,t=0

Γ(N + 1 + s)

Γ(N + 1) Γ(s+ 1)
· Γ(N + 1 + t)

Γ(N + 1) Γ(t+ 1)

∫
BN

u(ξ)〈z, ξ〉s〈ξ, z〉tdV (ξ).

Since the integral vanishes unless t = s + |α| − |β|, we may rewrite the above
summation as∫

BN

u(ξ)

|1− 〈z, ξ〉|2(N+1)
dV (ξ)

=

∞∑
s=0

Γ(N + 1 + s)

Γ(N + 1) Γ(s+ 1)
· Γ(N + 1 + s+ |α| − |β|)

Γ(N + 1) Γ(s+ |α| − |β|+ 1)
×

×
∫
BN

u(ξ)〈z, ξ〉s〈ξ, ξ〉s+|α|−|β|dV (ξ) (5.2)

= ∂̄βz

{
z̄α ·

∞∑
s=0

Γ(N + 1 + s) Γ(N + 1 + s+ |α| − |β|)
Γ(N + 1) Γ(s+ 1) Γ(N + s+ |α|)

ϕ̂(N + s+ |α|)|z|2s
}
.

The last identity follows from formula (5.1). To simplify the notation we now set
M = N + 1 − |β| − `. Since |α| + |β| + 2` ≤ 2N + 1 and |β| ≤ |α|, we have
1 ≤M ≤ N + 1− |β|. Let us choose ϕ such that

ϕ̂(ζ) =
Γ(N + 1)

Γ(N + 1− |`|)
· Γ(ζ) Γ(ζ + 1− |α| − |β| − `)

Γ(ζ + 1− |α|) Γ(ζ + 1− |β|)
(5.3)

=
Γ(N + 1)

Γ(M + |β|)
· Γ(ζ) Γ(ζ +M −N − |α|)

Γ(ζ − |α|+ 1) Γ(ζ − |β|+ 1)
.

The existence of such a function ϕ will be established below. Since for all integers
s ≥ 0,

ϕ̂(N + s+ |α|) =
Γ(N + 1)

Γ(M + |β|)
· Γ(N + s+ |α|) Γ(M + s)

Γ(N + s+ 1) Γ(N + s+ |α| − |β|+ 1)
,

formula (5.2) simplifies to∫
BN

u(ξ)

|1− 〈z, ξ〉|2(N+1)
dV (ξ) =

Γ(M)

Γ(M + |β|)
∂̄βz

{
z̄α ·

∞∑
s=0

Γ(M + s)

Γ(M) Γ(s+ 1)
|z|2s

}

=
Γ(M)

Γ(M + |β|)
∂̄βz
{
z̄α (1− |z|2)−M

}
.

It follows that

B(u)(z) =
Γ(M)

Γ(M + |β|)
(1− |z|2)N+1 · ∂̄βz

{
z̄α (1− |z|2)−M

}
. (5.4)
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We now explain the existence of ϕ and show that the corresponding function u
belongs to L1(BN ). First note that if |α| = 0, then |β| = 0 as well since we assumed
that |β| ≤ |α| and so in this case, formula (5.3) becomes

ϕ̂(ζ) =
Γ(N + 1)

Γ(N + 1− `)
· Γ(ζ) Γ(ζ + 1− `)

Γ(ζ + 1) Γ(ζ + 1)

=


1
ζ if ` = 0,

Γ(N+1)
Γ(N+1−`) ·

1
ζ ·

1
(ζ+1−`)···ζ if ` ≥ 1.

In the first case, ϕ = 1. In the second case, ϕ is a linear combination of log(r) and
r−1, . . . , r1−`.

Now assume |α| ≥ 1. Then second factor on the right hand-side of (5.3) reduces
to a proper rational function of the form

1
(ζ−|β|−`)···(ζ−|β|) if |α| = 1,

(ζ+1−|α|)···(ζ−1)
(ζ+1−|α|−|β|−`)···(ζ−|β|) if |α| ≥ 2,

whose numerator has degree |α|−1 and whose denominator has degree |α|+` > |α|−
1. Therefore, ϕ(r) exists and it is a linear combination of r1−|α|−|β|−`, . . . , r−|β|.
In all cases, we have

ϕ(r) = O(r1−|α|−|β|−`) as r → 0+,

which implies that for any ζ ∈ ∂BN ,

u(rζ) = r|α|+|β|ϕ(r2)ζ̄αζβ = O(r2−|α|−|β|−2`).

Since (2N − 1) + 2− |α| − |β| − 2` = 2N + 1− |α| − |β| − 2` ≥ 0, using integration
by polar coordinates, we conclude that u ∈ L1(BN ).

Choosing |β| = 0 in (5.4) shows that z̄α(1 − |z|2)` belongs to ran(B) whenever
|α| + 2` ≤ 2N + 1. It then follows that z̄α|z|2s (and hence zα|z|2s, after taking
complex conjugates) belongs to ran(B) whenever |α|+ 2s ≤ 2N + 1.

Generally, whenever |α|+ |β|+ 2` ≤ 2N + 1, we may use (5.4) to conclude that
ran(B) contains the function

Γ(M)

Γ(M + |β|)
(1− |z|2)N+1 · ∂̄βz

{
z̄α (1− |z|2)−M

}
= z̄αzβ(1− |z|2)` +

∑
µ+ν=β
|µ|≥1

cµ,ν z̄
α−µ zν (1− |z|2)N+1−M−|ν|

= z̄αzβ(1− |z|2)` +
∑

µ+ν=β
|µ|≥1

cµ,ν z̄
α−µ zν (1− |z|2)|β|+`−|ν|,

where cµ,ν ’s are constants. Note that each term in the summation has total degree
at most |α|+ |β|+2` ≤ 2N+1 and the degree in z is |ν| < |β|. As a consequence, an
induction in |β| shows that z̄αzβ(1−|z|2)` belongs to ran(B) whenever |α|+|β|+2` ≤
2N+1. Letting ` = 0, we conclude that z̄αzβ ∈ ran(B) whenever |α|+|β| ≤ 2N+1.

For each 1 ≤ j ≤ s, we showed above the existence of a function uj ∈ L1(BN )
such that B(uj) = Qj . Using the commutativity of the Berezin transform and
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automorphisms of the unit ball (see [AFR93, Proposition 2.3], for example), we
have

B(uj ◦ ϕwj ) = B(uj) ◦ ϕwj = Qj ◦ ϕwj .
It then follows that B(

∑s
j=1 uj ◦ ϕwj ) =

∑s
j=1Qj ◦ ϕwj as required. �

Remark 5.2. Using (5.4) in the case ` = 1, |β| = 0 and |α| ≥ 1 (hence M = N)
shows that for u(z) = z̄αϕ(|z|2) with ϕ̂ given by (5.3), we obtain

B
(
z̄α|z|−2|α| − z̄α

)
=
|α|
N
z̄α(1− |z|2),

which implies

B
( |α|+N

N
z̄α − z̄α|z|−2|α|

)
=
|α|
N
z̄α|z|2.

This identity is valid for all 1 ≤ |α| < 2N . For N = 1 and α = 1, this is the formula
given in [Ahe04, Lemma 1].

As is well known in the literature, properties of the Berezin transform have
consequences in the theory of Toeplitz operators. We discuss here a few examples.

Remark 5.3. Setting α = β = (1, 0, . . . , 0) and ` = 0 (hence, M = N) in (5.4)
gives

B(u)(z) =
1

N
(1− |z|2)N+1 · ∂̄z1{z̄1(1− |z2|)−N}

=
1

N
(1− |z|2)N+1 ·

{
(1− |z|2)−N +N |z1|2(1− |z|2)−N−1

}
=

1

N
(1− |z|2) + |z1|2. (5.5)

Here, u(z) = |z1|2ϕ(|z|2) with

ϕ̂(ζ) =
Γ(ζ) Γ(ζ − 1)

Γ(ζ) Γ(ζ)
=

1

ζ − 1
= r̂−1(ζ).

It follows that u(z) = |z1|2
|z|2 for z ∈ BN\{0}, which is bounded and is not plurihar-

monic if N ≥ 2.
Let us rewrite the identity in (5.5) in the form

(N − 1)|z1|2 −
N∑
j=2

|zj |2 = B(h)

with h(z) = −1 + N |z1|2
|z|2 . It follows that

(N − 1)Tz1Tz̄1 −
N∑
j=2

TzjTz̄j = Th,

where h is a bounded function and h(z) 6= (N−1)|z1|2−
∑N
j=2 |zj |2. It is important

to note that this phenomenon cannot occur for N = 1 due to Corollary 4.5.

We end the paper by showing that the product of two Toeplitz operators with
polynomial symbols, under a certain condition on the degrees, is again a Toeplitz
operator. However, we note that the symbol of the resulting Toeplitz operator is
not always a polynomial.
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Proposition 5.4. Let α and β be two multiindexes such that |α| ≥ 1 and |β| ≥ 1.
Then TzβTz̄α = Tu for some u ∈ L1(BN ) if and only if |α|+ |β| ≤ 2N + 1.

As a consequence, if f and g are polynomials in z and z̄ such that the sum of
the degree of f in z and the degree of g in z̄ is at most 2N + 1, then there exists
h ∈ L1(BN ) such that TfTg = Th.

Proof. Suppose TzβTz̄α = Tu for some u ∈ L1(BN ). Taking Berezin transforms
gives

B(u) = B(Tu) = B(TzβTz̄α) = z̄αzβ .

Write α = (α1, . . . , αN ) and β = (β1, . . . , βN ). Since |α| ≥ 1 and |β| ≥ 1, there exist
j, ` such that βj 6= 0 and α` 6= 0. It follows that the total degree of ∂zj ∂̄z`(z̄

αzβ)
is exactly |α|+ |β| − 2. Proposition 5.1 implies that |α|+ |β| − 2 ≤ 2N − 1, which
gives |α|+ |β| ≤ 2N + 1.

Conversely, if |α| + |β| ≤ 2N + 1, then by Theorem 5.1, there exists a function
u ∈ L1(BN ) such that z̄αzβ = B(u). This implies that B(TzβTz̄α) = B(u), which
gives TzβTz̄α = Tu. For any holomorphic polynomials p and q, using the well-known
properties of Toeplitz operators, we have

Tp̄(z)zβTq(z)z̄α = Tp̄
(
TzβTz̄α

)
Tq = Tp̄TuTq = Tp̄uq.

The last statement of the proposition now follows. �
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