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Abstract. Let R be an arbitrary bounded complete Reinhardt domain
in Cn. We show that for n ≥ 2, if a Hankel operator with an anti-
holomorphic symbol is Hilbert–Schmidt on the Bergman space A2(R),
then it must equal zero. This fact has previously been proved only for
strongly pseudoconvex domains or for a certain class of pseudoconvex
domains.
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1. Introduction

We denote by dV the Lebesgue volume measure on Cn. Let Ω ⊆ Cn be
a bounded domain. The Bergman space A2(Ω) consists of all holomorphic
functions on Ω that are square integrable with respect to dV . It is well
known that A2(Ω) is a closed subspace of L2(Ω) = L2(Ω, dV ). Let P de-
note the orthogonal projection from L2(Ω) onto A2(Ω). For any function
ϕ ∈ L2(Ω), the Hankel operator Hϕ : A2(Ω)→ L2(Ω)	 A2(Ω) is defined by
Hϕh = (I − P )(ϕh). When ϕ is bounded, it is clear that Hϕ is a bounded
operator. If ϕ is not bounded, Hϕ is a densely defined operator and it may be
unbounded. Hankel operators have been of interest to researchers in several
complex variables due to their connection with the ∂̄-Neumann operator.
When Ω is a bounded pseudoconvex domain, Kohn’s formula [5, Theorem
4.4.5] gives I − P = ∂̄∗N(0,1)∂̄, where N(0,1) is the ∂̄-Neumann operator on

(0, 1)-forms, which is the bounded inverse of the complex Laplacian ∂̄ ∂̄∗+∂̄∗∂̄
(see [5, Chapter 4] for more details). This implies that when ϕ is C1 up to
the boundary, we have Hϕh = ∂̄∗N(0,1)(h∂̄ϕ) for all h ∈ A2(Ω). In this pa-
per, we are particularly interested in Hankel operators with antiholomorphic
symbols, that is, ϕ = f̄ for some f in A2(Ω).
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There is a vast literature on the studies of boundedness, compactness,
and Schatten-class membership of Hankel operators on various domains in
Cn. In this paper, we would like to investigate Hilbert–Schmidt Hankel op-
erators with anti-holomorphic symbols.

Recall that a linear operator S : H1 → H2 between two Hilbert spaces
is called a Hilbert–Schmidt operator if

‖S‖2HS =
∑
m

‖Sem‖2 <∞

for some orthonormal basis {em} of H1. It is well known that the quantity
‖S‖2HS defined above is independent of the choice of the orthonormal basis.

In the case of dimension one, Arazy et. al. [2] proved the following
remarkable formula:

‖Hf̄‖2HS =
1

π

∫
Ω

|f ′(z)|2dV (z).

This shows thatHf̄ is Hilbert–Schmidt if and only if f belongs to the Dirichlet
space over Ω. The formula remains valid in more general settings and we refer
the interested reader to [2] for more details.

In higher dimensions (n ≥ 2), the situation is quite different. Zhu [11]
showed that when Ω = Bn, the unit ball, Hf̄ is a Hilbert–Schmidt opera-
tor if and only if f is a constant function. This result and more generally,
the characterization of Schatten-class membership of Hf̄ on various domains
have been investigated by many researchers. Most results were first obtained
for the unit ball in Cn, then generalized to strongly pseudoconvex domains.
Smoothness of the boundaries is usually assumed in the hypotheses. See, just
to list a few, [1, 6, 7, 8, 10, 12] and the references therein. In [6], the authors
considered smoothly pseudoconvex domains of finite type in C2. Most of the
above papers used deep results and sophisticated techniques in the theory of
several complex variables. In [9], Schneider reproved Zhu’s aforementioned
result on Hilbert–Schmidt Hankel operators using a more elementary ap-
proach via direct computations. Because of the symmetry of the ball, such
computations can be carried out explicitly. In their recent paper [4], Çelik
and Zeytuncu investigated the same problem when Ω is a complex ellipsoid
in Cn given by

Ω = {(z1, . . . , zn) ∈ Cn : |z1|r1 + · · ·+ |zn|rn < 1},
where r1, . . . , rn are positive real numbers. Motivated by their work, in this
paper we generalize their result to bounded complete Reinhardt domains in
Cn. We recall the definition of complete Reinhardt domains.

Definition 1.1. A domain Ω is a complete Reinhardt domain if for any point
(w1, . . . , wn) in Ω and any complex numbers ζ1, . . . , ζn in the closed the unit
disk, the point (ζ1w1, . . . , ζnwn) belongs to Ω.

The radial image (also called the base) D of Ω is a subset of Rn+ (here
R+ = [0,∞)) defined by

D = {(|w1|, . . . , |wn|) ∈ Rn+ : (w1, . . . , wn) belongs to Ω)}.
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We now state the main result in this paper.

Theorem 1.2. Let Ω be a bounded complete Reinhardt domain in Cn with
n ≥ 2 and let f be in A2(Ω). If Hf̄ is a Hilbert–Schmidt operator on A2(Ω),
then f must be a constant function.

There are several advantages of our approach. Firstly, it is quite ele-
mentary. We do not use any deep results in the theory of several complex
variables. The key step in the proof involves only real analysis. Secondly,
our approach works for any bounded (not necessarily complete) Reinhardt
domain provided that the set of all monomials forms a complete orthogonal
set in the Bergman space. The convexity of the domain or regularity of the
boundary does not play any role in our analysis. Thirdly, our result remains
valid when the Lebesgue measure dV is replaced by a positive Borel measure
on Ω, again provided that the monomials still form a complete orthogonal set
in the corresponding Bergman space. On the other hand, there are obvious
drawbacks of our method. Since we make heavy use of the orthogonality and
density of the monomials, we are not able to carry out our work on non-
Reinhardt domains. In addition, our approach does not seem to work in the
study of Schatten-class membership of Hankel operators.

Remark 1.3. The author has recently learned that in their latest preprint [3],
Çelik and Zeytuncu obtained Theorem 1.2 under an additional assumption
that Ω be pseudoconvex in C2.

Remark 1.4. Our approach relies heavily on the boundedness of the domains.
In fact, Theorem 1.2 may fail if Ω is unbounded. Çelik and Zeytuncu [3] gave
an example of an unbounded complete Reinhardt domain Ω ⊂ C2 for which
A2(Ω) has infinite dimension and Hz1z2 is a Hilbert–Schmidt operator.

2. Hankel operators with anti-holomorphic symbols

Throughout this section, we assume that Ω is a bounded complete Reinhardt
domain. We denote by Z+ the set of non-negative integers {0, 1, . . .}. For
any index γ = (γ1, . . . , γn) ∈ Zn+ and any z = (z1, . . . , zn) we write |γ| =
γ1 + · · ·+ γn and zγ = zγ11 · · · zγnn (with the convention 00 = 1).

Define cγ = ‖zγ‖A2(Ω) = (
∫

Ω
|zγ |2 dV (z))1/2. Since Ω is a bounded

complete Reinhardt domain, it is known that the set
{
eγ(z) =

zγ

cγ
: γ ∈ Zn+

}
is an orthonormal basis for A2(Ω).

Now write Ω = Tn ×D, where D is the radial image of Ω. Using polar
coordinates zj = tje

iθj with (θ1, . . . , θn) ∈ [0, 2π)n and (t1, . . . , tn) ∈ D, we
obtain

c2γ =

∫
Ω

|zγ |2 dV (z) =

∫
D

t2γ11 · · · t2γnn dν(t) =

∫
D

t2γ dν(t).

Here dν(t) = (2π)nt1 · · · tn dt1 · · · dtn.
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To simplify the notation, we set cβ =∞ for any β = (β1, . . . , βn) ∈ Zn
that contains a negative component. We shall use

∑
α to denote the infinite

series with α running over Zn+.

Lemma 2.1. Let f(z) =
∑
α fαz

α be a function in A2(Ω). For any γ ∈ Zn+
we have

‖Hf̄eγ‖2 =
∑
α

|fα|2
(c2α+γ

c2α
− c2α
c2γ−α

)
=
∑
α

|fα|2 ‖Hz̄αeγ‖2.

As a result, we obtain

‖Hf̄‖2HS =
∑
α

|fα|2
{∑

γ

(c2α+γ

c2α
− c2α
c2γ−α

)}
=
∑
α

|fα|2 ‖Hz̄α‖2HS.

Note that we allow the case where one of the sides, and hence both sides, are
infinite.

Proof. The lemma is well known but for completeness we provide here the
calculations. Note that for any α and β in Zn+, we have

zαeβ(z) = c−1
β zαzβ = c−1

β zβ+α = (cβ+α/cβ) eβ+α(z).

It then follows that

P (z̄αeγ) =
∑
β

〈P (z̄αeγ) eβ〉eβ =
∑
β

〈eγ , zαeβ〉 eβ

=
∑
β

(cβ+α/cβ)〈eγ , eα+β〉 eβ =

{
0 if α 6� γ
(cγ/cγ−α) eγ−α if α � γ

.

Here we write α � γ if αj ≤ γj for all j = 1, . . . , n. Now we have

‖Hf̄eγ‖2 = ‖(I − P )(f̄ eγ)‖2 = ‖f̄ eγ‖2 − ‖P (f̄ eγ)‖2

= ‖feγ‖2 − ‖P (f̄ eγ)‖2 =
∥∥∥∑

α

fα (zαeγ)
∥∥∥2

−
∥∥∥∑

α

f̄αP (z̄αeγ)
∥∥∥2

=
∥∥∥∑

α

(fαcα+γ/cα) eα+γ

∥∥∥2

−
∥∥∥∑
α�γ

(f̄αcα/cγ−α) eγ−α

∥∥∥2

=
∑
α

|fα|2c2α+γ/c
2
α −

∑
α�γ

|fα|2c2α/c2γ−α

=
∑
α

|fα|2
(c2α+γ

c2α
− c2α
c2γ−α

)
=
∑
α

|fα|2 ‖Hz̄αeγ‖2.

Recall that cγ−α =∞ if γ−α contains a negative component. Now summing
over all multi-indices γ in Zn+ and changing the order of summation, we obtain
the required formula for the Hilbert–Schmidt norms. �

Remark 2.2. The quantity ‖Hz̄α‖2HS was denoted by Sα in [4].

The following lemma provides a lower estimate for the Hilbert–Schmidt
norm of the Hankel operator Hz̄α .
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Lemma 2.3. Let α be in Zn+ with |α| > 0. For any positive integer K, we have

‖Hz̄α‖2HS ≥
∑
|γ|=K

lim inf
s→∞

c2sγ+α

c2sγ
.

Proof. For any integer N ≥ 1, using Lemma 2.1, we have the estimate

‖Hz̄α‖2HS ≥
∑
|γ|≤N

‖Hz̄αeγ‖2 =
∑
|γ|≤N

(c2γ+α

c2γ
−

c2γ
c2γ−α

)
=
∑
|γ|≤N

c2γ+α

c2γ
−

∑
|β|+|α|≤N

c2β+α

c2β

(by the change of index γ = β + α)

=
∑

N−|α|<|γ|≤N

c2γ+α

c2γ
≥
∑
|γ|=N

c2γ+α

c2γ
. (2.1)

Let s be a positive integer. Setting N = sK, we have

‖Hz̄α‖2HS ≥
∑
|γ|=sK

c2γ+α

c2γ
≥
∑
|γ|=K

c2sγ+α

c2sγ
.

Taking limit as s→∞, we obtain the required inequality. �

Remark 2.4. Inequality (2.1) was proved in [4]. For the reader’s convenience,
we have provided a short proof.

The following result is the most crucial estimate in our approach. It
gives a lower bound for the limits that appeared in Lemma 2.3.

Proposition 2.5. Let D be a bounded open subset in Rn+. Suppose µ is a
positive Borel measure on D such that for any c > 0, if D ∩ (c,∞)n is
nonempty, then µ(D ∩ (c,∞)n) > 0.

Let 0 < r < 1 be given. Then there exists d > 0 such that for any
γ ∈ Zn+\{0} satisfying

γj
|γ|
≥ r for all j = 1, . . . , n, (2.2)

and any α ∈ Zn+ we have the inequality

lim inf
s→∞

∫
D
tsγ+α dµ(t)∫
D
tsγ dµ(t)

≥ d|α|.

Remark 2.6. If dµ(t) = g(t) dt1 · · · dtn, where g is positive on D ∩ (0,∞)n,
then µ satisfies the hypothesis of the proposition. In the proof of Theorem
1.2, we use g(t) = (2π)n · t1 · · · tn.

Proof. Since D is bounded, WLOG, we may assume that D ⊆ [0, 1]n. Since
D is relatively open in Rn+, there is a number 0 < b < 1 such that the set

D ∩ (b,∞)n is not empty. Choose any positive number d such that d < b1/r.
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We shall show that d satisfies the conclusion of the proposition. Note that d
depends only on r and D.

Let α, γ be in Zn+ such that γ satisfies the condition (2.2). Put W =
D ∩ (d,∞)n. For any positive integer s, we have∫

D

tsγ+α dµ(t) ≥
∫
W

tsγ+α dµ(t) ≥ d|α|
∫
W

tsγ dµ(t)

= d|α|
(∫

D

tsγ dµ(t)−
∫
D\W

tsγ dµ(t)
)
.

It follows that ∫
D
tsγ+α dµ(t)∫
D
tsγ dµ(t)

≥ d|α|
(

1−

∫
D\W tsγ dµ(t)∫
D
tsγ dµ(t)

)
. (2.3)

Now for t ∈ D\W ⊆ [0, 1]n\(d,∞)n, there is a j between 1 and n such that
tj ≤ d. As a result,

tγ = tγ11 · · · tγnn ≤ dγj ≤ dr|γ|.
The second inequality follows from the facts that d < b1/r < 1 and that
γj ≥ r|γ|. We then have∫

D\W
tsγ dµ(t) ≤ (dr)s|γ|µ(D\W ).

On the other hand, letting V = D ∩ (b,∞)n, we obtain∫
D

tsγ dµ(t) ≥
∫
V

tsγ dµ(t) ≥ bs|γ|µ(V ).

Note that µ(V ) > 0 by the hypothesis on µ. Now inequality (2.3) implies∫
D
tsγ+α dµ(t)∫
D
tsγ dµ(t)

≥ d|α|
(

1− (dr)s|γ|µ(D\W )

bs|γ|µ(V )

)
= d|α|

{
1− (drb−1)s|γ| · µ(D\W )

µ(V )

}
.

Since drb−1 < 1, taking limit as s→∞, we obtain the required inequality. �

We are now ready to prove our main result, Theorem 1.2, which we
restate here.

Theorem 2.7. Let Ω be a bounded complete Reinhardt domain in Cn with
n ≥ 2 and let f be in A2(Ω). If Hf̄ is a Hilbert–Schmidt operator on A2(Ω),
then f must be a constant function.

Proof. Write f(z) =
∑
α fαz

α. By Lemma 2.1, we have

‖Hf̄‖2HS =
∑
α

|fα|2‖Hz̄α‖2HS.

If ‖Hf̄‖HS <∞, then |fα|‖Hz̄α‖HS <∞ for all α. We shall show that when-
ever |α| > 0, we have ‖Hz̄α‖HS = ∞, so as a result, fα = 0 for such α. This
implies that f is a constant function.
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Now let us fix an α ∈ Zn+ with |α| > 0. For any positive integer M ,
Lemma 2.3 with K = 2nM gives

‖Hz̄α‖2HS ≥
∑

|γ|=2nM

lim inf
s→∞

c2sγ+α

c2sγ
. (2.4)

For j = 1, . . . , n− 1, choose γj to be an any positive integer satisfying M ≤
γj ≤ 2M . Put γn = 2nM − (γ1 + · · ·+ γn−1). Then we have |γ| = 2nM and

γn ≥ 2nM − (n− 1)(2M) = 2M > M.

It follows that γj/|γ| ≥ M/(2nM) = 1/(2n) for any 1 ≤ j ≤ n. Note that
there are Mn−1 choices for such γ. Applying Proposition 2.5 with r = 1/(2n)
and dµ(t) = dν(t) = (2π)nt1 · · · tn dt1 · · · dtn, we obtain a constant d > 0
(dependent only on n and D) such that for any such γ,

lim inf
s→∞

c2sγ+α

c2sγ
= lim inf

s→∞

∫
D
t2sγ+2α dν(t)∫
D
t2sγ dν(t)

≥ d2|α|.

Inequality (2.4) then implies

‖Hz̄α‖2HS ≥Mn−1d2|α|.

Since n > 1 and M was arbitrary, we conclude that ‖Hz̄α‖HS =∞, which is
what we wished to show. �

Remark 2.8. The only reason we have assumed Ω to be a complete Rein-
hardt domain is so that the set of monomials {zγ/cγ : γ ∈ Zn+} forms an
orthonormal basis for A2(Ω). This can occur even when Ω is just a bounded
Reinhardt domain. In such a case, the conclusion of Theorem 2.7 remains
valid. An example of such a domain is

Ω =
{
z ∈ Cn : 1/2 < |z| < 1

}
.

Since any function in A2(Ω) extends to a holomorphic function on the entire
open unit ball by Hartogs’s extension theorem, it follows that holomorphic
polynomials are dense in A2(Ω).
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