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Abstract. In this paper, we study the product of a composition operator
Cϕ with the adjoint of a composition operator C∗

ψ on the Hardy space

H2(D). The order of the product gives rise to two different cases. We
completely characterize when the operator CϕC

∗
ψ is invertible, isometric,

and unitary and when the operator C∗
ψCϕ is isometric and unitary . If

one of the inducing maps ϕ or ψ is univalent, we completely characterize
when C∗

ψCϕ is invertible.
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1. Introduction

Let H2 = H2(D) be the set of all holomorphic functions on the open unit
disc D having square summable complex coefficients. Let ϕ be a holomorphic
self-map of D. The composition operator Cϕ induced by ϕ is defined by

Cϕf = f ◦ ϕ for all f ∈ H2.

A classical result of Littlewood [7] shows that Cϕ is bounded. There are
three excellent expositions on composition operators [6, 8, 11]. Cowen and
MacCluer’s book [6] is comprehensive, Martinez and Rosenthal’s book [8] pro-
vides an enjoyable introductory treatment for operators on H2, and Shapiro’s
book [11] is a wonderful introduction to composition operators.

This paper examines the invertibility of the products CϕC
∗
ψ and C∗ψCϕ

on the Hardy space H2 in terms of the inducing maps ϕ and ψ. The compact-
ness of these two products has been previously studied in [3, 4, 5]. We take
as our motivation two classical results in the theory: in 1969, H. J. Schwartz
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proved in his thesis [10] that a composition operator is invertible if and only if
its inducing map is a disc automorphism, and in 1968, Eric Nordgren showed
that a composition operator on H2 is an isometry if and only if the inducing
map is inner and fixes the origin [9].

In Section 3, we completely generalize these results for the product
CϕC

∗
ψ. In short, CϕC

∗
ψ is invertible if and only if each factor is invertible

and CϕC
∗
ψ is an isometry if and only if Cψ is unitary and Cϕ is an isometry.

In addition, we determine that CϕC
∗
ψ is unitary if and only if each factor is

unitary.
The operator C∗ψCϕ, on the other hand, is considerably more interesting.

In the case when the inducing maps are monomials it is not hard to see that
C∗ψCϕ is isometric exactly when the product is an isometric composition
operator. We prove this in the following example.

Example. Suppose that ϕ(z) = zn and ψ(z) = zm. The operator C∗ψCϕ is an
isometry if and only if there exists p ∈ N such that n = pm.

Proof. Suppose that C∗ψCϕ is an isometry and m does not divide n, that is,

n 6= km for any k ∈ N. Fix f(z) =
∑∞
k=0 akz

k ∈ H2. Then

〈C∗ψCϕz, f〉 = 〈Cϕz, Cψf〉 =

∞∑
k=0

ak〈zn, zkm〉 = 0.

Hence C∗ψCϕ is not one-to-one and so cannot be an isometry.

Now if ϕ(z) = zn and ψ(z) = zm with n = pm for some p ∈ N, then
Cϕ = CψCzp . Hence

C∗ψCϕ = C∗ψCψCzp = Czp

is an isometry as zp is an inner function that fixes the origin. �

Section 4, we extend this example, showing that C∗ψCϕ is an isometry
if and only if ϕ = α ◦ψ where both α and ψ are inner and fix the origin. We
obtain as a corollary that C∗ψCϕ is unitary if and only if ψ is inner and fixes
the origin and φ = λψ for some λ ∈ T.

The most interesting phenomena occurs when attempting to charac-
terize invertibility of C∗ψCϕ. We observe that when ϕ = ψ is nonconstant,
invertibility of the product is equivalent to Cϕ having closed range. Many
equivalent characterizations in terms of the inducing map exist in the litera-
ture for Cϕ to have closed range [2], [12]. However, when one of the inducing
maps is univalent, we can completely determine when C∗ψCϕ is invertible,
partially recovering the results in Section 3.

2. Preliminaries

In this section, we record definitions and results necessary for the sequel. By
a disc automorphism we shall mean a one-to-one and onto holomorphic map
of D that necessarily takes the form

ϕ(z) = λ
a− z
1− az

, a ∈ D, |λ| = 1.
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In [10], Schwartz showed that Cϕ is invertible if and only if ϕ is a disc
automorphism and C−1ϕ = Cϕ−1 (see [6], pages 4 and 5, and [8] pages 173
and 174).

An operator T is an isometry if ‖Tx‖ = ‖x‖ for all x, or equivalently
T ∗T = I. A function ϕ is an inner function if ϕ ∈ H∞(D) and

lim
r→1−

|ϕ(reiθ)| = 1 a.e. θ ∈ R.

Eric Nordgren related these two notions in [9].

Nordgren’s Theorem ([9]) A composition operator Cϕ is an isometry if and
only if ϕ is an inner function and ϕ(0) = 0.

Finally, let Kp(z) denote the reproducing kernel at p in D for H2, which
is given by

Kp(z) =
1

1− pz
, z ∈ D.

The defining property of the reproducing kernel is

f(p) = 〈f,Kp〉 for all f ∈ H2.

We will have occasion to employ one of the most useful properties in the
study of composition operators, the adjoint property:

C∗ϕKp(z) = Kϕ(p)(z). (2.1)

An operator T : H → H is unitary if and only if T ∗ = T−1. By
Schwartz’s results, we recognize that if a composition operator Cϕ is unitary,
then ϕ must be a disc automorphism. Using the adjoint property, one can
then recover the well-known fact that Cϕ is unitary if and only if ϕ(z) = λz
for λ ∈ ∂D.

3. The operator CϕC
∗
ψ

Our first theorem characterizes the invertibility of CϕC
∗
ψ in terms of the

inducing maps ϕ and ψ, thus generalizing Schwartz’s results.

Theorem 3.1. The operator CϕC
∗
ψ is invertible if and only if Cϕ and Cψ are

invertible; that is, ϕ and ψ are disc automorphisms.

Proof. Suppose that CϕC
∗
ψ is invertible. Then the inducing map ϕ must be

non-constant and Cϕ is an onto operator. All composition operators induced
by a non-constant function are one-to-one, thus Cϕ is invertible. Now the
product is invertible by hypothesis, so since Cϕ is invertible, C∗ψ is invertible,
implying Cψ is invertible.

Conversely if ϕ and ψ are disc automorphisms, then CϕC
∗
ψ is invertible

with inverse C∗ψ−1Cϕ−1 . �
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In attempting to extend Nordgren’s Theorem, we observe that if T is
an isometry and S is unitary, then it is trivially true that TS∗ is an isometry,
as

(TS∗)∗TS∗ = ST ∗TS∗ = SS∗ = I.

We now prove that this is the only manner in which the operator CϕC
∗
ψ can

be an isometry.

Theorem 3.2. The operator CϕC
∗
ψ is an isometry if and only if ϕ is an inner

function such that ϕ(0) = 0 and ψ(z) = λz for some λ ∈ ∂D.

Proof. Assume that CϕC
∗
ψ is an isometry. By hypothesis, CψC

∗
ϕCϕC

∗
ψ = I,

so Cψ is onto. As Cψ is one-to-one, we conclude that Cψ is invertible, from
which it follows that ψ is a disc automorphism. Let p ∈ D be such that
ψ(p) = 0. Now using the adjoint property (Equation 2.1), K0 = 1, and
Cϕ1 = 1 successively yields

‖CϕC∗ψKp‖ = ‖CϕKψ(p)‖ = ‖Cϕ1‖ = 1. (3.1)

The fact that CϕC
∗
ψ is an isometry and Equation 3.1 yields

1 = ‖CϕC∗ψKp‖ = ‖Kp‖ =

√
1

1− |p|2
.

Thus p = 0, ψ(0) = 0 and ψ is a disc automorphism that fixes the origin.
Hence ψ(z) = λz for some λ ∈ ∂D and Cψ is unitary.

Combining this fact with CψC
∗
ϕCϕC

∗
ψ = I yields

C∗ϕCϕ = C∗ψCψ = I.

Hence Cϕ is an isometry and by Nordgren’s Theorem ϕ is an inner function
such that ϕ(0) = 0.

The reverse direction is trivial since the assumptions yield Cϕ is an
isometry and Cψ is unitary. �

We are now in a position to easily characterize when CϕC
∗
ψ is unitary.

Corollary 3.3. The operator CϕC
∗
ψ is unitary if and only if both ϕ and ψ are

of the form λz for some λ ∈ ∂D.

Proof. If CϕC
∗
ψ is unitary then CϕC

∗
ψ and CψC

∗
ϕ are both isometries. By

Theorem 3.2 we conclude that both ϕ and ψ have the desired form.

The reverse implication is trivial since if both ϕ and ψ are of the form
λz for some λ ∈ ∂D, then both Cϕ and C∗ψ are unitaries, and the product of
unitary operators is unitary. �

Note that Theorem 3.1 and Corollary 3.3 show that if CϕC
∗
ψ is either

an isometry or unitary then the product is an isometric composition operator
or a unitary composition operator, respectively.
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4. The operator C∗
ψCϕ

Using the example recorded in the introduction of this paper, we see that if
ϕ(z) = zn for n ≥ 2, then C∗ϕCϕ = I. Hence C∗ϕCϕ can be unitary even if
neither C∗ϕ nor Cϕ is invertible. Similarly, if m ≥ 2 and n = pm for some
p ∈ N, then C∗zmCzn is an isometry even though Czm is not unitary.

In order to examine when C∗ψCϕ does admit characterizations analogous
to those obtained in Section 3, we first record a useful result regarding norm-
one products.

Theorem 4.1. The norm of C∗ψCϕ is 1 if and only if ϕ(0) = ψ(0) = 0.

Proof. Suppose that the norm of C∗ψCϕ is 1. Using Cϕ1 = 1, K0 = 1 and the

adjoint property (Equation (2.1)) successively, we see C∗ψCϕ1 = Kψ(0). Now

1

1− |ψ(0)|2
= ‖Kψ(0)‖2 = ‖C∗ψCϕ1‖2 ≤ ‖C∗ψCϕ‖2 = 1.

Thus ψ(0) = 0. The same calculation with the adjoint C∗ϕCψ shows that

1

1− |ϕ(0)|2
≤ 1,

which implies that ϕ(0) = 0 as well.
We now prove the converse using Littlewood’s subordination principle

([7], also see [6, 8, 11]),

‖Cϕ‖2 ≤
1 + |ϕ(0)|
1− |ϕ(0)|

.

Thus

‖C∗ψCϕ‖2 ≤
(1 + |ψ(0)|)(1 + |ϕ(0)|)
(1− |ψ(0)|)(1− |ϕ(0))|

and the hypothesis ϕ(0) = ψ(0) = 0 implies ‖C∗ψCϕ‖ ≤ 1. To finish, observe
that

‖C∗ψCϕ‖ ≥ ‖C∗ψCϕ1‖ = ‖Kψ(0)‖ = 1.

Hence ‖C∗ψCϕ‖ = 1. �

We obtain an immediate corollary.

Corollary 4.2. If C∗ψCϕ is an isometry then ϕ(0) = ψ(0) = 0.

Proof. Since C∗ψCϕ is an isometry its norm is one. Thus by Theorem 4.1 we

conclude ϕ(0) = ψ(0) = 0. �

We now consider the case where C∗ψCϕ is an isometry and obtain a
generalization of Nordgren’s Theorem. We shall require some preliminary
results. The first is a proposition which is valid on any Hilbert space.

Proposition 4.3. Let S and T be contractive operators on a Hilbert space. If
S∗T is an isometry then T is an isometry and we have T = SS∗T .
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Proof. Since S and T are contractive operators, I−T ∗T ≥ 0 and I−SS∗ ≥ 0.
It follows that T ∗(I − SS∗)T ≥ 0. Now we have

(I − T ∗T ) + T ∗(I − SS∗)T = I − T ∗T + T ∗T − T ∗SS∗T = 0,

since S∗T is an isometry. We conclude that T ∗T = I, i.e. T is an isometry,
and T ∗(I−SS∗)T = 0. The latter equality implies (I−SS∗)1/2T = 0, which
gives (I − SS∗)T = 0. We then have T = SS∗T . �

If H is any Hilbert space and T : H → H, we say T is almost multi-
plicative if whenever f, g ∈ H are such that f · g also belongs to H, we have
T (f · g) = Tf · Tg. By definition, Cϕ(f · g) = (Cϕf) · (Cϕg) for all f, g ∈ H2

such that f ·g ∈ H2, so Cϕ is almost multiplicative. In [10], Schwartz charac-
terized the composition operators as the only bounded almost multiplicative
operators on H2. The following lemma benefits from this result.

Lemma 4.4. Suppose ϕ and ψ are holomorphic self-maps of D such that ϕ is
non-constant and Cϕ = CψT for some T ∈ B(H2). Then there is a holomor-
phic self-map α of D such that T = Cα. Consequently, ϕ = α ◦ ψ.

Proof. It follows from Cϕ = CψT that ran(Cϕ) ⊂ ran(Cψ). Hence, there is
a function u in H2 such that ϕ = Cψu = u ◦ ψ. Since ϕ is assumed to be
non-constant, ψ is non-constant as well.

Now let f, g ∈ H2 with f · g ∈ H2. Then we have

Cψ
(
Tf · Tg

)
= (CψTf) · (CψTg) = (Cϕf) · (Cϕg) = Cϕ(f · g) = CψT (f · g).

Note that the first equality holds even though we do not know a priori that
Tf · Tg is in H2. As ψ is non-constant, Cψ is injective, and so the identity
Cψ
(
Tf · Tg

)
= CψT (f · g) implies that Tf · Tg = T (f · g). By Schwartz’s

result, there exists a holomorphic self-map α of D so that T = Cα on H2.
Since Cϕ = CψCα = Cα◦ψ, we conclude that ϕ = α ◦ ψ. �

We are now in a position to analyze C∗ψCϕ in the case where the product
is an isometry.

Theorem 4.5. The operator C∗ψCϕ is an isometry if and only if ψ is an inner

function with ψ(0) = 0 and ϕ = α◦ψ where α : D→ D is inner with α(0) = 0.

Proof. Suppose C∗ψCϕ is an isometry. By Corollary 4.2 we have ψ(0) = ϕ(0) =

0. This implies that Cψ and Cϕ are contractive on H2. Now applying Lemma
4.3 with S = Cψ and T = Cϕ, we conclude that Cϕ is isometric and Cϕ =
CψC

∗
ψCϕ. It follows that ϕ is an inner function and so in particular, ϕ is

non-constant.
By Lemma 4.4, there is a holomorphic self-map α of D such that Cα =

C∗ψCϕ and ϕ = α ◦ ψ. Since Cα is then isometric, α is inner and α(0) = 0.

The identity ϕ = α ◦ ψ then forces |ψ| = 1 almost everywhere on ∂D, and so
ψ is inner as well.

The reverse implication follows from direct calculation. If ψ is an inner
function with ψ(0) = 0 and ϕ = α◦ψ where α : D→ D is inner with α(0) = 0,
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then Cψ and Cα are isometries on H2. Using the identity Cϕ = CψCα, we
obtain

C∗ψCϕ = C∗ψCψCα = Cα.

Therefore C∗ψCϕ is an isometry. �

Much like in Section 3, we can use the isometric characterization to
describe precisely when C∗ψCϕ is unitary in terms of the inducing maps.

Corollary 4.6. The operator C∗ψCϕ is unitary if and only if ψ is an inner

function with ψ(0) = 0 and there is a constant λ ∈ ∂D such that ϕ = λψ.

Proof. Suppose C∗ψCϕ is unitary. By Theorem 4.5, both ψ and ϕ are inner

with ψ(0) = ϕ(0) = 0 and there is an inner function α with α(0) = 0 such
that ϕ = α ◦ψ. As in the proof of Theorem 4.5, we have C∗ψCϕ = Cα, and so

Cα is unitary. This implies that α(z) = λz for some constant a with |λ| = 1.
Therefore, ϕ = λψ. The reverse implication is trivial. �

For the remainder of this work, we consider the invertibility of C∗ψCϕ. It
is natural to start with the case ϕ = ψ, and here we see the first roadblocks to
generalizing Schwartz’s characterization of invertible composition operators.
If ϕ = ψ, then C∗ϕCϕ is positive and invertible, which implies that Cϕ is
bounded below and hence has closed range. Conversely, if Cϕ has closed range
and ϕ is non-constant, then the injectivity of Cϕ implies Cϕ is bounded below,
so C∗ϕCϕ is invertible. We have then shown

Observation 4.7. The operator C∗ϕCϕ is invertible if and only if ϕ is non-
constant and Cϕ has closed range.

The closed range composition operators have been objects of protracted
study. If ϕ is inner then the range of Cϕ is certainly closed, but examples of
non-inner, non-constant symbols such that Cϕ has closed range were pointed
out by Cima, Thomson, and Wogen in [2]. In order to generalize Schwartz’s
results, then, we must be more restrictive in the class of symbols we work
with.

Akeroyd and Ghatage note in [1] that by combining Theorem 2.5 in
their paper with Zorboska’s Corollary 4.2 in [12], one obtains the following
theorem. We are indebted to Paul Bourdon for pointing out this result.

Theorem 4.8 ([1],[12]). Let ϕ be a univalent, holomorphic self-map of D. Then
Cϕ has closed range on H2 if and only if ϕ is a disc automorphism.

Assuming one of the inducing maps ϕ or ψ is univalent, we are now in
a position to recover the results of Theorem 3.1.

Theorem 4.9. Let ψ be a univalent, holomorphic self-map of D. Let ϕ be any
other holomorphic self-map of D. Then the product C∗ψCϕ is invertible if and
only if both ϕ and ψ are disc automorphisms.
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Proof. Suppose that C∗ψCϕ is invertible. Then C∗ψ is surjective which implies
that Cψ is bounded below and so the range of Cψ is closed. According to The-
orem 4.8, ψ is a disc automorphism. Therefore Cψ is invertible. Consequently,
Cϕ is invertible, which immediately yields that ϕ is a disc automorphism as
well. The reverse implication is trivial. �

Looking beyond univalent maps, the next natural class of examples to
study seems to be C∗znCϕ for n ≥ 2. We conjecture that, if C∗znCϕ is invertible,
then φ(z) = α(zn) where α is a disk automorphism, but we are unable to
show this even for the case where n = 2.
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