Invertible Composition Operators:
The product of a composition operator with
the adjoint of a composition operator.
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Abstract. In this paper, we study the product of a composition operator
C, with the adjoint of a composition operator Cy, on the Hardy space
H?(D). The order of the product gives rise to two different cases. We
completely characterize when the operator C,Cj, is invertible, isometric,
and unitary and when the operator C;,C, is isometric and unitary . If
one of the inducing maps ¢ or 9 is univalent, we completely characterize
when C,C,, is invertible.
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1. Introduction

Let H? = H?(D) be the set of all holomorphic functions on the open unit
disc D having square summable complex coefficients. Let ¢ be a holomorphic
self-map of ID. The composition operator Cy, induced by ¢ is defined by

Cof =fop forall fe H?

A classical result of Littlewood [7] shows that C, is bounded. There are
three excellent expositions on composition operators [6, 8, 11]. Cowen and
MacCluer’s book [6] is comprehensive, Martinez and Rosenthal’s book [8] pro-
vides an enjoyable introductory treatment for operators on H?, and Shapiro’s
book [11] is a wonderful introduction to composition operators.

This paper examines the invertibility of the products C,Cj, and C7,Cy
on the Hardy space H? in terms of the inducing maps ¢ and 7. The compact-
ness of these two products has been previously studied in [3, 4, 5]. We take
as our motivation two classical results in the theory: in 1969, H. J. Schwartz
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proved in his thesis [10] that a composition operator is invertible if and only if
its inducing map is a disc automorphism, and in 1968, Eric Nordgren showed
that a composition operator on H? is an isometry if and only if the inducing
map is inner and fixes the origin [9].

In Section 3, we completely generalize these results for the product
C,Cy. In short, C,C7 is invertible if and only if each factor is invertible
and C,C} is an isometry if and only if Cy is unitary and C,, is an isometry.
In addition, we determine that C,C7, is unitary if and only if each factor is
unitary.

The operator C’;z Cy, on the other hand, is considerably more interesting.
In the case when the inducing maps are monomials it is not hard to see that
C;,Cy is isometric exactly when the product is an isometric composition
operator. We prove this in the following example.

Ezample. Suppose that ¢(z) = 2" and ¢(z) = 2™. The operator C},C, is an
isometry if and only if there exists p € N such that n = pm.

Proof. Suppose that CJ,C,, is an isometry and m does not divide n, that is,
n # km for any k € N. Fix f(z) = > 2, axz" € H?. Then

(C}Coz, f) = (Cpz,Cyf) = Y _ar(z",z") = 0.
k=0

Hence C,C,, is not one-to-one and so cannot be an isometry.
Now if ¢(z) = 2™ and ¥(z) = 2™ with n = pm for some p € N, then
C, = CyC.». Hence
CyCp = CyCyCor = Cop

is an isometry as 2P is an inner function that fixes the origin. O

Section 4, we extend this example, showing that C7,C,, is an isometry
if and only if ¢ = a 01 where both « and ¢ are inner and fix the origin. We
obtain as a corollary that C,C,, is unitary if and only if ¢ is inner and fixes
the origin and ¢ = Ay for some A € T.

The most interesting phenomena occurs when attempting to charac-
terize invertibility of CJ,C,. We observe that when ¢ = ¢ is nonconstant,
invertibility of the product is equivalent to C, having closed range. Many
equivalent characterizations in terms of the inducing map exist in the litera-
ture for C, to have closed range [2], [12]. However, when one of the inducing
maps is univalent, we can completely determine when C’:ZC@ is invertible,
partially recovering the results in Section 3.

2. Preliminaries

In this section, we record definitions and results necessary for the sequel. By
a disc automorphism we shall mean a one-to-one and onto holomorphic map
of D that necessarily takes the form

a—z
(p(z)_)\l—dz’

aeD, |A=1.
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In [10], Schwartz showed that C, is invertible if and only if ¢ is a disc
automorphism and C;l = C,-1 (see [6], pages 4 and 5, and [8] pages 173
and 174).

An operator T is an isometry if |Tx| = ||z|| for all z, or equivalently
T*T = I. A function ¢ is an inner function if ¢ € H*°(D) and

lim |p(re®)|=1 ae. 0€R.
r—1-
Eric Nordgren related these two notions in [9)].

Nordgren’s Theorem ([9]) A composition operator C, is an isometry if and
only if ¢ is an inner function and p(0) = 0.

Finally, let K,(z) denote the reproducing kernel at p in D for H?, which
is given by

K,(z) zeD.

~ T
The defining property of the reproducing kernel is

f(p)=(f,K,) forall feH?*

We will have occasion to employ one of the most useful properties in the
study of composition operators, the adjoint property:

CLEy(2) = Koy (2). (2.1)

An operator T : H — H is unitary if and only if T* = T—!. By
Schwartz’s results, we recognize that if a composition operator C, is unitary,
then ¢ must be a disc automorphism. Using the adjoint property, one can
then recover the well-known fact that C,, is unitary if and only if ¢(2) = Az
for A € OD.

3. The operator C,C7

Our first theorem characterizes the invertibility of C,Cy in terms of the
inducing maps ¢ and v, thus generalizing Schwartz’s results.

Theorem 3.1. The operator C,Cy, is invertible if and only if Cy, and Cy are
invertible; that is, ¢ and 1 are disc automorphisms.

Proof. Suppose that C,C7, is invertible. Then the inducing map ¢ must be
non-constant and C, is an onto operator. All composition operators induced
by a non-constant function are one-to-one, thus C, is invertible. Now the
product is invertible by hypothesis, so since C,, is invertible, C7, is invertible,
implying Cy is invertible.

Conversely if ¢ and ¢ are disc automorphisms, then C,C7, is invertible
with inverse C;Z_lel. O
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In attempting to extend Nordgren’s Theorem, we observe that if T is
an isometry and S is unitary, then it is trivially true that T'S* is an isometry,
as

(TS*)*TS* =ST*TS* =5S*=1.
We now prove that this is the only manner in which the operator C,C7, can
be an isometry.

Theorem 3.2. The operator C,Cy, is an isometry if and only if ¢ is an inner
function such that ©(0) = 0 and (z) = Az for some X\ € OD.

Proof. Assume that CWC;Z is an isometry. By hypothesis, Cy,CZC,Cy = 1,
so Cy is onto. As Cy is one-to-one, we conclude that Cy is invertible, from
which it follows that ¢ is a disc automorphism. Let p € D be such that
¥(p) = 0. Now using the adjoint property (Equation 2.1), Ky = 1, and
C,1 =1 successively yields

|CoCLE | = ICo Koyl = 1] = 1. (3.1)

The fact that C,C7, is an isometry and Equation 3.1 yields

. [ 1
1 =[|C,CLEKp|| = (K]l = T

Thus p = 0, ¥(0) = 0 and % is a disc automorphism that fixes the origin.
Hence ¢(z) = Az for some A € 9D and CYy is unitary.
Combining this fact with Cy,CZC,Cy, = I yields
C,Cp, =CyCy = 1.
Hence C,, is an isometry and by Nordgren’s Theorem ¢ is an inner function
such that ¢(0) = 0.

The reverse direction is trivial since the assumptions yield Cy, is an
isometry and Cy is unitary. O

We are now in a position to easily characterize when C<PC17) is unitary.

Corollary 3.3. The operator C,C7, is unitary if and only if both ¢ and ¢ are
of the form Az for some \ € OD.

Proof. 1t C,Cy, is unitary then C,Cy and CyCy are both isometries. By
Theorem 3.2 we conclude that both ¢ and 1 have the desired form.

The reverse implication is trivial since if both ¢ and i are of the form
Az for some A € 9D, then both C,, and C’;} are unitaries, and the product of
unitary operators is unitary. (I

Note that Theorem 3.1 and Corollary 3.3 show that if C,C7, is either
an isometry or unitary then the product is an isometric composition operator
or a unitary composition operator, respectively.
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4. The operator C;;C,,

Using the example recorded in the introduction of this paper, we see that if
¢(z) = 2" for n > 2, then C;C, = I. Hence C;C, can be unitary even if
neither C:; nor Cy, is invertible. Similarly, if m > 2 and n = pm for some
p € N, then C%..C,» is an isometry even though C,» is not unitary.

In order to examine when C,C, does admit characterizations analogous
to those obtained in Section 3, we first record a useful result regarding norm-
one products.

Theorem 4.1. The norm of C;,C,, is 1 if and only if p(0) = (0) = 0.

Proof. Suppose that the norm of CJ,C, is 1. Using C,1 = 1, Ko = 1 and the
adjoint property (Equation (2.1)) successively, we see C} Ci,1 = Ky (0). Now

1 ) )
Trop — el = IC5CALIP < ICSC, |1 = 1.
Thus 9(0) = 0. The same calculation with the adjoint C'3Cy shows that
1
L—|e(O) =~

which implies that ¢(0) = 0 as well.
We now prove the converse using Littlewood’s subordination principle
([7], also see [6, 8, 11]),
1+ |¢(0)]
ol < T EO,
|0(0)]

(1 + [P + |0)]
(1= [40))(1 = |(0))
and the hypothesis ¢(0) = ¥(0) = 0 implies ||C};C,|| < 1. To finish, observe
that

Thus

. )
ICCI? < |
1C3Cell Z 1CLC L = Kyl = 1.
Hence [|C},Cy|| = 1. O
We obtain an immediate corollary.
Corollary 4.2. If C}C,, is an isometry then p(0) = ¢(0) = 0.

Proof. Since CCy, is an isometry its norm is one. Thus by Theorem 4.1 we
conclude p(0) = 1(0) = 0. O

We now consider the case where Cj,C, is an isometry and obtain a
generalization of Nordgren’s Theorem. We shall require some preliminary
results. The first is a proposition which is valid on any Hilbert space.

Proposition 4.3. Let S and T be contractive operators on a Hilbert space. If
S*T is an isometry then T is an isometry and we have T = SS*T.
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Proof. Since S and T are contractive operators, I —T*T > 0 and I —S5* > 0.
Tt follows that T*(I — SS*)T > 0. Now we have

(I—T*T)+T*(I — S§ )T =1 —T*T +T*T — T*SS*T =0,

since S*T is an isometry. We conclude that T*T = I, i.e. T is an isometry,
and T*(I — SS*)T = 0. The latter equality implies (I —SS*)*/2T = 0, which
gives (I — SS*)T = 0. We then have T'= SS*T. O

If H is any Hilbert space and T': H — H, we say T is almost multi-
plicative if whenever f,g € H are such that f - g also belongs to H, we have
T(f-g) =Tf Tg. By definition, C,,(f - g) = (C,f) - (Cpg) for all f,g € H?
such that f-g € H?, so C, is almost multiplicative. In [10], Schwartz charac-
terized the composition operators as the only bounded almost multiplicative
operators on H2. The following lemma, benefits from this result.

Lemma 4.4. Suppose ¢ and 1 are holomorphic self-maps of D such that ¢ is
non-constant and C, = CyT for some T € B(H?). Then there is a holomor-
phic self-map a of D such that T = Cy,. Consequently, ¢ = a o).

Proof. Tt follows from C, = CyT that ran(C,) C ran(Cy). Hence, there is
a function w in H? such that ¢ = Cyu = wo 1. Since ¢ is assumed to be
non-constant, 1 is non-constant as well.

Now let f,g € H? with f-g € H?. Then we have

Cy(Tf-Tg) = (CyTf) (CyTg) = (Cof) - (Cog) = Co(f - 9) = C4T(f - g).-
Note that the first equality holds even though we do not know a priori that
Tf-Tgisin H?. As is non-constant, Cy is injective, and so the identity
Cy(Tf-Tg) = CyT(f-g) implies that Tf - Tg = T(f - g). By Schwartz’s
result, there exists a holomorphic self-map « of D so that T = C, on H?2.
Since Oy = CyCy = Caoy, we conclude that ¢ = a o . (]

We are now in a position to analyze C’;Z C, in the case where the product
is an isometry.

Theorem 4.5. The operator C;,C,, is an isometry if and only if ¢ is an inner
function with ¥ (0) = 0 and p = aot) where o : D — D is inner with a(0) = 0.

Proof. Suppose C;,C,, is an isometry. By Corollary 4.2 we have ¢(0) = ¢(0) =
0. This implies that C, and C, are contractive on H 2. Now applying Lemma
4.3 with S = Cy and T = C,, we conclude that C, is isometric and C, =
CyC,Cy. 1t follows that ¢ is an inner function and so in particular, ¢ is
non-constant.

By Lemma 4.4, there is a holomorphic self-map a of D such that C, =
C;Cp and p = a 01. Since O, is then isometric, o is inner and «(0) = 0.
The identity ¢ = « o 1) then forces |[¢)| = 1 almost everywhere on 9D, and so
1 is inner as well.

The reverse implication follows from direct calculation. If ) is an inner
function with ¢(0) = 0 and ¢ = aot) where v : D — D is inner with «(0) = 0,
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then Cy and C, are isometries on H2. Using the identity C, = CyCy, we
obtain

CypCp = CCyCq = Cy.
Therefore C},C,, is an isometry. (I

Much like in Section 3, we can use the isometric characterization to
describe precisely when CC, is unitary in terms of the inducing maps.

Corollary 4.6. The operator CjC,, is unitary if and only if ¢ is an inner
function with 1¥(0) = 0 and there is a constant A € ID such that ¢ = \p.

Proof. Suppose C,C,, is unitary. By Theorem 4.5, both ¢ and ¢ are inner
with 1(0) = ¢(0) = 0 and there is an inner function « with a(0) = 0 such
that ¢ = ao. As in the proof of Theorem 4.5, we have CjC, = Cy, and so
Cy, is unitary. This implies that a(z) = Az for some constant a with [A| = 1.
Therefore, ¢ = Aip. The reverse implication is trivial. O

For the remainder of this work, we consider the invertibility of C Cy. It
is natural to start with the case ¢ = 1), and here we see the first roadblocks to
generalizing Schwartz’s characterization of invertible composition operators.
If » = 9, then C;C, is positive and invertible, which implies that C,, is
bounded below and hence has closed range. Conversely, if C, has closed range
and ¢ is non-constant, then the injectivity of C, implies C, is bounded below,
so C;C,, is invertible. We have then shown

Observation 4.7. The operator C;Cy, is invertible if and only if ¢ is non-
constant and C, has closed range.

The closed range composition operators have been objects of protracted
study. If ¢ is inner then the range of C, is certainly closed, but examples of
non-inner, non-constant symbols such that C,, has closed range were pointed
out by Cima, Thomson, and Wogen in [2]. In order to generalize Schwartz’s
results, then, we must be more restrictive in the class of symbols we work
with.

Akeroyd and Ghatage note in [1] that by combining Theorem 2.5 in
their paper with Zorboska’s Corollary 4.2 in [12], one obtains the following
theorem. We are indebted to Paul Bourdon for pointing out this result.

Theorem 4.8 ([1],[12]). Let ¢ be a univalent, holomorphic self-map of D. Then
C., has closed range on H? if and only if ¢ is a disc automorphism.

Assuming one of the inducing maps ¢ or v is univalent, we are now in
a position to recover the results of Theorem 3.1.

Theorem 4.9. Let ¢ be a univalent, holomorphic self-map of D. Let ¢ be any
other holomorphic self-map of D. Then the product C7,C, is invertible if and
only if both ¢ and v are disc automorphisms.
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Proof. Suppose that CCy is invertible. Then C7 is surjective which implies
that Cy is bounded below and so the range of Cy, is closed. According to The-
orem 4.8, 1 is a disc automorphism. Therefore Cy, is invertible. Consequently,
C, is invertible, which immediately yields that ¢ is a disc automorphism as
well. The reverse implication is trivial. (I

Looking beyond univalent maps, the next natural class of examples to
study seems to be C.C, for n > 2. We conjecture that, if C}.C, is invertible,
then ¢(z) = «(2") where « is a disk automorphism, but we are unable to
show this even for the case where n = 2.
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