Invertible Composition Operators: The product of a composition operator with the adjoint of a composition operator.

John H. Clifford, Trieu Le and Alan Wiggins

Abstract. In this paper, we study the product of a composition operator C_{φ} with the adjoint of a composition operator C_{ψ}^* on the Hardy space $H^2(\mathbb{D})$. The order of the product gives rise to two different cases. We completely characterize when the operator $C_{\varphi}C_{\psi}^*$ is invertible, isometric, and unitary and when the operator $C_{\psi}C_{\varphi}$ is isometric and unitary. If one of the inducing maps φ or ψ is univalent, we completely characterize when $C_{\psi}^*C_{\varphi}$ is invertible.

Mathematics Subject Classification (2010). Primary 47B33; Secondary 00A00.

Keywords. Composition Operator, Invertible, Isometry, Unitary.

1. Introduction

Let $H^2 = H^2(\mathbb{D})$ be the set of all holomorphic functions on the open unit disc \mathbb{D} having square summable complex coefficients. Let φ be a holomorphic self-map of \mathbb{D} . The composition operator C_{φ} induced by φ is defined by

$$C_{\varphi}f = f \circ \varphi$$
 for all $f \in H^2$.

A classical result of Littlewood [7] shows that C_{φ} is bounded. There are three excellent expositions on composition operators [6, 8, 11]. Cowen and MacCluer's book [6] is comprehensive, Martinez and Rosenthal's book [8] provides an enjoyable introductory treatment for operators on H^2 , and Shapiro's book [11] is a wonderful introduction to composition operators.

This paper examines the invertibility of the products $C_{\varphi}C_{\psi}^*$ and $C_{\psi}^*C_{\varphi}$ on the Hardy space H^2 in terms of the inducing maps φ and ψ . The compactness of these two products has been previously studied in [3, 4, 5]. We take as our motivation two classical results in the theory: in 1969, H. J. Schwartz

This work was completed with the support of our T_EX -pert.

proved in his thesis [10] that a composition operator is invertible if and only if its inducing map is a disc automorphism, and in 1968, Eric Nordgren showed that a composition operator on H^2 is an isometry if and only if the inducing map is inner and fixes the origin [9].

In Section 3, we completely generalize these results for the product $C_{\varphi}C_{\psi}^*$. In short, $C_{\varphi}C_{\psi}^*$ is invertible if and only if each factor is invertible and $C_{\varphi}C_{\psi}^*$ is an isometry if and only if C_{ψ} is unitary and C_{φ} is an isometry. In addition, we determine that $C_{\varphi}C_{\psi}^*$ is unitary if and only if each factor is unitary.

The operator $C_{\psi}^* C_{\varphi}$, on the other hand, is considerably more interesting. In the case when the inducing maps are monomials it is not hard to see that $C_{\psi}^* C_{\varphi}$ is isometric exactly when the product is an isometric composition operator. We prove this in the following example.

Example. Suppose that $\varphi(z) = z^n$ and $\psi(z) = z^m$. The operator $C^*_{\psi}C_{\varphi}$ is an isometry if and only if there exists $p \in \mathbb{N}$ such that n = pm.

Proof. Suppose that $C_{\psi}^* C_{\varphi}$ is an isometry and m does not divide n, that is, $n \neq km$ for any $k \in \mathbb{N}$. Fix $f(z) = \sum_{k=0}^{\infty} a_k z^k \in H^2$. Then

$$\langle C_{\psi}^* C_{\varphi} z, f \rangle = \langle C_{\varphi} z, C_{\psi} f \rangle = \sum_{k=0}^{\infty} \overline{a}_k \langle z^n, z^{km} \rangle = 0$$

Hence $C_{\psi}^* C_{\varphi}$ is not one-to-one and so cannot be an isometry.

Now if $\varphi(z) = z^n$ and $\psi(z) = z^m$ with n = pm for some $p \in \mathbb{N}$, then $C_{\varphi} = C_{\psi}C_{z^p}$. Hence

$$C^*_{\psi}C_{\varphi} = C^*_{\psi}C_{\psi}C_{z^p} = C_{z^p}$$

is an isometry as z^p is an inner function that fixes the origin.

Section 4, we extend this example, showing that $C_{\psi}^* C_{\varphi}$ is an isometry if and only if $\varphi = \alpha \circ \psi$ where both α and ψ are inner and fix the origin. We obtain as a corollary that $C_{\psi}^* C_{\varphi}$ is unitary if and only if ψ is inner and fixes the origin and $\phi = \lambda \psi$ for some $\lambda \in \mathbb{T}$.

The most interesting phenomena occurs when attempting to characterize invertibility of $C^*_{\psi}C_{\varphi}$. We observe that when $\varphi = \psi$ is nonconstant, invertibility of the product is equivalent to C_{φ} having closed range. Many equivalent characterizations in terms of the inducing map exist in the literature for C_{φ} to have closed range [2], [12]. However, when one of the inducing maps is univalent, we can completely determine when $C^*_{\psi}C_{\varphi}$ is invertible, partially recovering the results in Section 3.

2. Preliminaries

In this section, we record definitions and results necessary for the sequel. By a *disc automorphism* we shall mean a one-to-one and onto holomorphic map of \mathbb{D} that necessarily takes the form

$$\varphi(z) = \lambda \frac{a-z}{1-\overline{a}z}, \quad a \in \mathbb{D}, \quad |\lambda| = 1.$$

In [10], Schwartz showed that C_{φ} is invertible if and only if φ is a disc automorphism and $C_{\varphi}^{-1} = C_{\varphi^{-1}}$ (see [6], pages 4 and 5, and [8] pages 173 and 174).

An operator T is an *isometry* if ||Tx|| = ||x|| for all x, or equivalently $T^*T = I$. A function φ is an *inner function* if $\varphi \in H^{\infty}(\mathbb{D})$ and

$$\lim_{r \to 1^{-}} |\varphi(re^{i\theta})| = 1 \quad \text{a.e.} \quad \theta \in \mathbb{R}.$$

Eric Nordgren related these two notions in [9].

Nordgren's Theorem ([9]) A composition operator C_{φ} is an isometry if and only if φ is an inner function and $\varphi(0) = 0$.

Finally, let $K_p(z)$ denote the *reproducing kernel* at p in \mathbb{D} for H^2 , which is given by

$$K_p(z) = \frac{1}{1 - \overline{p}z}, \quad z \in \mathbb{D}.$$

The defining property of the reproducing kernel is

$$f(p) = \langle f, K_p \rangle$$
 for all $f \in H^2$.

We will have occasion to employ one of the most useful properties in the study of composition operators, the *adjoint property*:

$$C^*_{\varphi}K_p(z) = K_{\varphi(p)}(z). \tag{2.1}$$

An operator $T : H \to H$ is *unitary* if and only if $T^* = T^{-1}$. By Schwartz's results, we recognize that if a composition operator C_{φ} is unitary, then φ must be a disc automorphism. Using the adjoint property, one can then recover the well-known fact that C_{φ} is unitary if and only if $\varphi(z) = \lambda z$ for $\lambda \in \partial \mathbb{D}$.

3. The operator $C_{\varphi}C_{\psi}^*$

Our first theorem characterizes the invertibility of $C_{\varphi}C_{\psi}^*$ in terms of the inducing maps φ and ψ , thus generalizing Schwartz's results.

Theorem 3.1. The operator $C_{\varphi}C_{\psi}^*$ is invertible if and only if C_{φ} and C_{ψ} are invertible; that is, φ and ψ are disc automorphisms.

Proof. Suppose that $C_{\varphi}C_{\psi}^*$ is invertible. Then the inducing map φ must be non-constant and C_{φ} is an onto operator. All composition operators induced by a non-constant function are one-to-one, thus C_{φ} is invertible. Now the product is invertible by hypothesis, so since C_{φ} is invertible, C_{ψ}^* is invertible, implying C_{ψ} is invertible.

Conversely if φ and ψ are disc automorphisms, then $C_{\varphi}C_{\psi}^*$ is invertible with inverse $C_{\psi^{-1}}^*C_{\varphi^{-1}}$.

In attempting to extend Nordgren's Theorem, we observe that if T is an isometry and S is unitary, then it is trivially true that TS^* is an isometry, as

$$(TS^*)^*TS^* = ST^*TS^* = SS^* = I.$$

We now prove that this is the only manner in which the operator $C_{\varphi}C_{\psi}^*$ can be an isometry.

Theorem 3.2. The operator $C_{\varphi}C_{\psi}^*$ is an isometry if and only if φ is an inner function such that $\varphi(0) = 0$ and $\psi(z) = \lambda z$ for some $\lambda \in \partial \mathbb{D}$.

Proof. Assume that $C_{\varphi}C_{\psi}^*$ is an isometry. By hypothesis, $C_{\psi}C_{\varphi}^*C_{\varphi}C_{\psi}^* = I$, so C_{ψ} is onto. As C_{ψ} is one-to-one, we conclude that C_{ψ} is invertible, from which it follows that ψ is a disc automorphism. Let $p \in \mathbb{D}$ be such that $\psi(p) = 0$. Now using the adjoint property (Equation 2.1), $K_0 = 1$, and $C_{\varphi}1 = 1$ successively yields

$$\|C_{\varphi}C_{\psi}^{*}K_{p}\| = \|C_{\varphi}K_{\psi(p)}\| = \|C_{\varphi}1\| = 1.$$
(3.1)

The fact that $C_{\varphi}C_{\psi}^*$ is an isometry and Equation 3.1 yields

$$1 = \|C_{\varphi}C_{\psi}^*K_p\| = \|K_p\| = \sqrt{\frac{1}{1 - |p|^2}}.$$

Thus p = 0, $\psi(0) = 0$ and ψ is a disc automorphism that fixes the origin. Hence $\psi(z) = \lambda z$ for some $\lambda \in \partial \mathbb{D}$ and C_{ψ} is unitary.

Combining this fact with $C_{\psi}C_{\varphi}^*C_{\varphi}C_{\psi}^* = I$ yields

$$C^*_{\varphi}C_{\varphi} = C^*_{\psi}C_{\psi} = I.$$

Hence C_{φ} is an isometry and by Nordgren's Theorem φ is an inner function such that $\varphi(0) = 0$.

The reverse direction is trivial since the assumptions yield C_{φ} is an isometry and C_{ψ} is unitary.

We are now in a position to easily characterize when $C_{\varphi}C_{\psi}^{*}$ is unitary.

Corollary 3.3. The operator $C_{\varphi}C_{\psi}^*$ is unitary if and only if both φ and ψ are of the form λz for some $\lambda \in \partial \mathbb{D}$.

Proof. If $C_{\varphi}C_{\psi}^*$ is unitary then $C_{\varphi}C_{\psi}^*$ and $C_{\psi}C_{\varphi}^*$ are both isometries. By Theorem 3.2 we conclude that both φ and ψ have the desired form.

The reverse implication is trivial since if both φ and ψ are of the form λz for some $\lambda \in \partial \mathbb{D}$, then both C_{φ} and C_{ψ}^* are unitaries, and the product of unitary operators is unitary.

Note that Theorem 3.1 and Corollary 3.3 show that if $C_{\varphi}C_{\psi}^*$ is either an isometry or unitary then the product is an isometric composition operator or a unitary composition operator, respectively.

4. The operator $C_{\psi}^* C_{\varphi}$

Using the example recorded in the introduction of this paper, we see that if $\varphi(z) = z^n$ for $n \ge 2$, then $C_{\varphi}^* C_{\varphi} = I$. Hence $C_{\varphi}^* C_{\varphi}$ can be unitary even if neither C_{φ}^* nor C_{φ} is invertible. Similarly, if $m \ge 2$ and n = pm for some $p \in \mathbb{N}$, then $C_{z^m}^* C_{z^n}$ is an isometry even though C_{z^m} is not unitary.

In order to examine when $C_{\psi}^* C_{\varphi}$ does admit characterizations analogous to those obtained in Section 3, we first record a useful result regarding norm-one products.

Theorem 4.1. The norm of $C^*_{\psi}C_{\varphi}$ is 1 if and only if $\varphi(0) = \psi(0) = 0$.

Proof. Suppose that the norm of $C_{\psi}^* C_{\varphi}$ is 1. Using $C_{\varphi} 1 = 1$, $K_0 = 1$ and the adjoint property (Equation (2.1)) successively, we see $C_{\psi}^* C_{\varphi} 1 = K_{\psi(0)}$. Now

$$\frac{1}{1 - |\psi(0)|^2} = \|K_{\psi(0)}\|^2 = \|C_{\psi}^* C_{\varphi} 1\|^2 \le \|C_{\psi}^* C_{\varphi}\|^2 = 1.$$

Thus $\psi(0) = 0$. The same calculation with the adjoint $C^*_{\omega}C_{\psi}$ shows that

$$\frac{1}{1 - |\varphi(0)|^2} \le 1,$$

which implies that $\varphi(0) = 0$ as well.

We now prove the converse using Littlewood's subordination principle ([7], also see [6, 8, 11]),

$$||C_{\varphi}||^{2} \leq \frac{1+|\varphi(0)|}{1-|\varphi(0)|}.$$

Thus

$$\|C_{\psi}^*C_{\varphi}\|^2 \le \frac{(1+|\psi(0)|)(1+|\varphi(0)|)}{(1-|\psi(0)|)(1-|\varphi(0))|}$$

and the hypothesis $\varphi(0) = \psi(0) = 0$ implies $\|C_{\psi}^* C_{\varphi}\| \le 1$. To finish, observe that

$$\|C_{\psi}^* C_{\varphi}\| \ge \|C_{\psi}^* C_{\varphi} 1\| = \|K_{\psi(0)}\| = 1.$$

Hence $\|C_{\psi}^* C_{\varphi}\| = 1.$

We obtain an immediate corollary.

Corollary 4.2. If $C_{\psi}^* C_{\varphi}$ is an isometry then $\varphi(0) = \psi(0) = 0$.

Proof. Since $C_{\psi}^* C_{\varphi}$ is an isometry its norm is one. Thus by Theorem 4.1 we conclude $\varphi(0) = \psi(0) = 0$.

We now consider the case where $C_{\psi}^* C_{\varphi}$ is an isometry and obtain a generalization of Nordgren's Theorem. We shall require some preliminary results. The first is a proposition which is valid on any Hilbert space.

Proposition 4.3. Let S and T be contractive operators on a Hilbert space. If S^*T is an isometry then T is an isometry and we have $T = SS^*T$.

Proof. Since S and T are contractive operators, $I - T^*T \ge 0$ and $I - SS^* \ge 0$. It follows that $T^*(I - SS^*)T \ge 0$. Now we have

$$(I - T^*T) + T^*(I - SS^*)T = I - T^*T + T^*T - T^*SS^*T = 0,$$

since S^*T is an isometry. We conclude that $T^*T = I$, i.e. T is an isometry, and $T^*(I - SS^*)T = 0$. The latter equality implies $(I - SS^*)^{1/2}T = 0$, which gives $(I - SS^*)T = 0$. We then have $T = SS^*T$.

If H is any Hilbert space and $T: H \to H$, we say T is almost multiplicative if whenever $f, g \in H$ are such that $f \cdot g$ also belongs to H, we have $T(f \cdot g) = Tf \cdot Tg$. By definition, $C_{\varphi}(f \cdot g) = (C_{\varphi}f) \cdot (C_{\varphi}g)$ for all $f, g \in H^2$ such that $f \cdot g \in H^2$, so C_{φ} is almost multiplicative. In [10], Schwartz characterized the composition operators as the only bounded almost multiplicative operators on H^2 . The following lemma benefits from this result.

Lemma 4.4. Suppose φ and ψ are holomorphic self-maps of \mathbb{D} such that φ is non-constant and $C_{\varphi} = C_{\psi}T$ for some $T \in B(H^2)$. Then there is a holomorphic self-map α of \mathbb{D} such that $T = C_{\alpha}$. Consequently, $\varphi = \alpha \circ \psi$.

Proof. It follows from $C_{\varphi} = C_{\psi}T$ that $\operatorname{ran}(C_{\varphi}) \subset \operatorname{ran}(C_{\psi})$. Hence, there is a function u in H^2 such that $\varphi = C_{\psi}u = u \circ \psi$. Since φ is assumed to be non-constant, ψ is non-constant as well.

Now let $f, g \in H^2$ with $f \cdot g \in H^2$. Then we have

$$C_{\psi}(Tf \cdot Tg) = (C_{\psi}Tf) \cdot (C_{\psi}Tg) = (C_{\varphi}f) \cdot (C_{\varphi}g) = C_{\varphi}(f \cdot g) = C_{\psi}T(f \cdot g).$$

Note that the first equality holds even though we do not know a priori that $Tf \cdot Tg$ is in H^2 . As ψ is non-constant, C_{ψ} is injective, and so the identity $C_{\psi}(Tf \cdot Tg) = C_{\psi}T(f \cdot g)$ implies that $Tf \cdot Tg = T(f \cdot g)$. By Schwartz's result, there exists a holomorphic self-map α of \mathbb{D} so that $T = C_{\alpha}$ on H^2 . Since $C_{\varphi} = C_{\psi}C_{\alpha} = C_{\alpha\circ\psi}$, we conclude that $\varphi = \alpha \circ \psi$.

We are now in a position to analyze $C_\psi^*C_\varphi$ in the case where the product is an isometry.

Theorem 4.5. The operator $C^*_{\psi}C_{\varphi}$ is an isometry if and only if ψ is an inner function with $\psi(0) = 0$ and $\varphi = \alpha \circ \psi$ where $\alpha : \mathbb{D} \to \mathbb{D}$ is inner with $\alpha(0) = 0$.

Proof. Suppose $C_{\psi}^* C_{\varphi}$ is an isometry. By Corollary 4.2 we have $\psi(0) = \varphi(0) = 0$. This implies that C_{ψ} and C_{φ} are contractive on H^2 . Now applying Lemma 4.3 with $S = C_{\psi}$ and $T = C_{\varphi}$, we conclude that C_{φ} is isometric and $C_{\varphi} = C_{\psi}C_{\psi}^*C_{\varphi}$. It follows that φ is an inner function and so in particular, φ is non-constant.

By Lemma 4.4, there is a holomorphic self-map α of \mathbb{D} such that $C_{\alpha} = C_{\psi}^* C_{\varphi}$ and $\varphi = \alpha \circ \psi$. Since C_{α} is then isometric, α is inner and $\alpha(0) = 0$. The identity $\varphi = \alpha \circ \psi$ then forces $|\psi| = 1$ almost everywhere on $\partial \mathbb{D}$, and so ψ is inner as well.

The reverse implication follows from direct calculation. If ψ is an inner function with $\psi(0) = 0$ and $\varphi = \alpha \circ \psi$ where $\alpha : \mathbb{D} \to \mathbb{D}$ is inner with $\alpha(0) = 0$,

then C_{ψ} and C_{α} are isometries on H^2 . Using the identity $C_{\varphi} = C_{\psi}C_{\alpha}$, we obtain

$$C_{\psi}^* C_{\varphi} = C_{\psi}^* C_{\psi} C_{\alpha} = C_{\alpha}$$

Therefore $C_{\psi}^* C_{\varphi}$ is an isometry.

Much like in Section 3, we can use the isometric characterization to describe precisely when $C^*_{\psi}C_{\varphi}$ is unitary in terms of the inducing maps.

Corollary 4.6. The operator $C^*_{\psi}C_{\varphi}$ is unitary if and only if ψ is an inner function with $\psi(0) = 0$ and there is a constant $\lambda \in \partial \mathbb{D}$ such that $\varphi = \lambda \psi$.

Proof. Suppose $C_{\psi}^* C_{\varphi}$ is unitary. By Theorem 4.5, both ψ and φ are inner with $\psi(0) = \varphi(0) = 0$ and there is an inner function α with $\alpha(0) = 0$ such that $\varphi = \alpha \circ \psi$. As in the proof of Theorem 4.5, we have $C_{\psi}^* C_{\varphi} = C_{\alpha}$, and so C_{α} is unitary. This implies that $\alpha(z) = \lambda z$ for some constant a with $|\lambda| = 1$. Therefore, $\varphi = \lambda \psi$. The reverse implication is trivial.

For the remainder of this work, we consider the invertibility of $C^*_{\psi}C_{\varphi}$. It is natural to start with the case $\varphi = \psi$, and here we see the first roadblocks to generalizing Schwartz's characterization of invertible composition operators. If $\varphi = \psi$, then $C^*_{\varphi}C_{\varphi}$ is positive and invertible, which implies that C_{φ} is bounded below and hence has closed range. Conversely, if C_{φ} has closed range and φ is non-constant, then the injectivity of C_{φ} implies C_{φ} is bounded below, so $C^*_{\varphi}C_{\varphi}$ is invertible. We have then shown

Observation 4.7. The operator $C_{\varphi}^*C_{\varphi}$ is invertible if and only if φ is nonconstant and C_{φ} has closed range.

The closed range composition operators have been objects of protracted study. If φ is inner then the range of C_{φ} is certainly closed, but examples of non-inner, non-constant symbols such that C_{φ} has closed range were pointed out by Cima, Thomson, and Wogen in [2]. In order to generalize Schwartz's results, then, we must be more restrictive in the class of symbols we work with.

Akeroyd and Ghatage note in [1] that by combining Theorem 2.5 in their paper with Zorboska's Corollary 4.2 in [12], one obtains the following theorem. We are indebted to Paul Bourdon for pointing out this result.

Theorem 4.8 ([1],[12]). Let φ be a univalent, holomorphic self-map of \mathbb{D} . Then C_{φ} has closed range on H^2 if and only if φ is a disc automorphism.

Assuming one of the inducing maps φ or ψ is univalent, we are now in a position to recover the results of Theorem 3.1.

Theorem 4.9. Let ψ be a univalent, holomorphic self-map of \mathbb{D} . Let φ be any other holomorphic self-map of \mathbb{D} . Then the product $C_{\psi}^*C_{\varphi}$ is invertible if and only if both φ and ψ are disc automorphisms.

Proof. Suppose that $C_{\psi}^* C_{\varphi}$ is invertible. Then C_{ψ}^* is surjective which implies that C_{ψ} is bounded below and so the range of C_{ψ} is closed. According to Theorem 4.8, ψ is a disc automorphism. Therefore C_{ψ} is invertible. Consequently, C_{φ} is invertible, which immediately yields that φ is a disc automorphism as well. The reverse implication is trivial.

Looking beyond univalent maps, the next natural class of examples to study seems to be $C_{z^n}^* C_{\varphi}$ for $n \ge 2$. We conjecture that, if $C_{z^n}^* C_{\varphi}$ is invertible, then $\phi(z) = \alpha(z^n)$ where α is a disk automorphism, but we are unable to show this even for the case where n = 2.

Acknowledgments

We thank Paul Bourdon for a careful reading of an initial draft of this manuscript and for suggesting a broader version of Theorem 4.9 along with a shorter proof.

References

- J. R. Akeroyd, P. G. Ghatage, Closed Range Composition Operators on A², Illinois J. Math., 52 (2008), 533-549
- [2] J. A. Cima, J. Thomson, W. Wogen, On Some Properties of Composition Operators, Indiana Univ. Math. J., 24, (1974), 215-220
- [3] J. H. Clifford, The product of a composition operator with the adjoint of a composition operator, Thesis, Michigan State University, 1998.
- [4] J. H. Clifford and D. Zheng, Composition operators on the Hardy space, Indiana Univ. Math. J., 48 (1999), 387-400.
- [5] J. H. Clifford and D. Zheng, Product of composition operators on the Bergman spaces, Chin. Ann. Math., **24B** (2003), 433-448
- [6] C.C. Cowen and B.D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, (1995).
- [7] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. **23**(1925).
- [8] R.A. Martinez and P. Rosenthal, An Introduction to Operators on Hardy-Hilbert Space, Springer-Verlag, 2007.
- [9] E. A. Nordgren, Composition operator, Canad. J. Math. 20(1968), 442-449.
- [10] H. J. Schwartz, Composition Operators on H^p, Thesis, University Toledo, 1968.
- [11] J. H. Shapiro, Composition operators and classical function theory, Springer-Verlag, 1993.
- [12] N. Zorboska, Composition Operators with Closed Range, Trans. Amer. Math. Soc., 344 (1994), 791-801

John H. Clifford Department of Mathematics and Statistics 2014 CASL Building 4901 Evergreen Road Dearborn, Michigan 48128-2406 e-mail: jcliff@umd.umich.edu

Trieu Le Department of Mathematics and Statistics Mail Stop 942 2801 W. Bancroft St. Toledo, OH 43606-3390 e-mail: trieu.le2@utoledo.edu

Alan Wiggins Department of Mathematics and Statistics 2014 CASL Building 4901 Evergreen Road Dearborn, Michigan 48128-2406 e-mail: adwiggin@umd.umich.edu