
NARRATIVE STATEMENT ON RESEARCH

TRIEU L. LE

Originated from the theory of differential equations and integral equations, Operator
Theory is the study of infinite matrices, their properties and applications. Such matrices
are infinite rectangular arrays of numbers that represent linear operators between spaces
of functions. Since the advent of Quantum Mechanics in the early 20th century, Operator
Theory has become increasingly important in mathematics, physics and other fields of
science. Applications of Operator Theory have also appeared in image processing, signal
processing and control theory.

I am particularly interested in the study of analytic and algebraic properties of several
classes of linear operators acting on Hilbert spaces whose elements are analytic functions.
I have investigated Toeplitz, Hankel, composition and weighted composition operators
on the Bergman, Hardy and Fock spaces. I have also been interested in the theory of
reproducing kernels and its applications to PDEs and signal processing.

Since finishing my Ph.D. in 2007, I have written 40 research papers. Please refer to
the list of publications for more details.

I. RESEARCH AWARDS.

1. Summer Research Awards and Fellowships, University of Toledo, 2016
2. Proposal submitted to Simons Foundation: Travel Support for Mathematicians,

Spring 2023. Proposal’s title: “Finite rank Toeplitz products in several complex
variables”. Funded.

II. RECENT CONFERENCE/SEMINAR PRESENTATIONS.

1. On range of Berezin transform in several variables and applications, International
Workshop in Operator Theory and Its Applications, Helsinki, Finland, July 31-
August 4, 2023

2. Toeplitz operators with pluriharmonic symbols on the ball, Analysis and Data Science
Seminar, University at Albany, October 26, 2021 via Zoom

3. m-Isometries and their properties, Trojan Mathematics Seminar, Troy University,
October 14, 2021 via Teams

4. When does TfTg − Th have finite rank?, International Workshop in Operator Theory
and Its Applications, Chapman University, August 9-11, 2021 via Zoom

5. Toeplitz operators with pluriharmonic symbols on the ball, Complex Analysis and
Operator Theory Seminar, University of Toledo, March 2021 via Zoom

6. Algebraic properties of m-isometries, Analysis Seminar, Washington University in
Saint Louis, February 2021 via Zoom

7. Algebraic properties of m-isometries, Analysis and Geometry Seminar, Central Michi-
gan University, February 2019

8. Inner Functions in Weighted Hardy Spaces, International Workshop on Operator
Theory and Applications, Shanghai, China, July 2018

9. A construction of inner functions on weighted Hardy spaces, Analysis Seminar, Hebei
Normal University, China, July 2018

10. Characterizations of inner functions on the unit disk, Summer Meetings, University
of Science, Ho Chi Minh city, Vietnam, July 2018

11. Composition operators on Hilbert spaces of entire functions, AMS Spring Southeast-
ern Sectional Meeting, Vanderbilt University, April 2018
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12. Commutants of separately radial Toeplitz operators on the Bergman space, Mathe-
matical Congress of the Americas, Montreal, Canada, July 2017

13. Commutants of separately radial Toeplitz operators, Ohio Conference, the Ohio State
University, April 2017

14. Algebraic properties of m-isometric commuting tuples, 33rd South Eastern Analysis
Meeting, University of Tennessee, March 2017

15. Commutants of Toeplitz operators with separately radial polynomial symbols on the
Fock space, International Workshop on Operator Theory and Applications, Washing-
ton University in St. Louis, July 2016

16. Hilbert–Schmidt Hankel operators with conjugate holomorphic symbols, 32nd South
Eastern Analysis Meeting, University of South Florida, March 2016

17. Hilbert–Schmidt Hankel operators with conjugate holomorphic symbols, Complex Anal-
ysis Seminar, University of Toledo, October 2015

18. Adjoints of linear fractional composition operators on weighted Hardy spaces, AMS
Sectional Meeting, Washington, DC, March 2015

III. RESEARCH ACCOMPLISHMENTS AND FUTURE PLANS.

1. Introduction

Everyone knows from their elementary mathematics classes that if the product of two
numbers is zero, then one of the numbers must be zero as well. On the other hand, it
is known to anyone who has some basic knowledge of linear algebra that the product of
two non-zero n×n matrices may be a zero matrix if the size n is bigger than one. This,
of course, remains true when one considers matrices of infinite sizes, or more formally,
linear operators. However, if we restrict our attention to certain classes of operators,
then the identity AB = 0 may force either A or B to be zero. In the sixties, Brown
and Halmos [19] showed that this is the case for Toeplitz operators on the Hardy space.
The matrix of such a Toeplitz operator has the same entries on each diagonal parallel
to the main diagonal. Since the appearance of Brown–Halmos’s paper, mathematicians
have investigated this “zero product problem” for other classes of operators. I have
been particularly interested in the case of Toeplitz operators on the Bergman space and
on the Segal–Bargmann space (also known as the symmetric Fock space in Quantum
Mechanics). Several results have been obtained but the general problem remains open.
Section 2 provides more details about this problem and my contribution toward solving
it. In Section 3, we discuss when a product of two (or more) Toeplitz operators is equal
to a finite rank perturbation of another Toeplitz operator.

Another problem that I have worked on is the “commuting problem”. We all know
that the multiplication of numbers is commutative: ab = ba. On the other hand, matrix
multiplication is not commutative. The products AB and BA may be different for
matrices A and B. In certain cases, it may happen that two products are the same.
We then say that A and B commute. In general, it may be broad to ask for conditions
that two arbitrary matrices (or operators) need to satisfy in order for them to commute.
However, reasonable conditions may be found if we restrict our attention to certain
classes of operators. Brown and Halmos [19] showed that two Toeplitz operators on
the Hardy space commute if and only if both are upper-triangular or both are lower-
triangular or one is a linear combination of the other with the identity operator. On
the Bergman space, the situation becomes more complicated. The Brown–Halmos’s
result remains true if certain additional conditions are imposed (as proved by Axler and
Čučković [10]) but it fails in general. Čučković and Rao [30] studied the case when one
of the operator is assumed to be a diagonal operator. In [38, 9, 43] my collaborators
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and I generalized this result to the Bergman space of the unit ball. We considered the
commuting problem when one of the Toeplitz operators is given by a separately radial
symbol. Our results show that several variables bring more interesting features to the
problem. In [11], W. Bauer and I obtained similar results for the Segal–Bargmann space
in all dimensions. More details are given in Section 4.

Inspired by the work of Cowen et al., and Bourdon and Narayan, I have also investi-
gated composition and weighted composition operators. Let H be a Hilbert space whose
elements are complex-valued functions defined on a domain Ω. A self-mapping ϕ of Ω
gives rise to a composition operator Cϕ defined on H by composing: Cϕh = h ◦ ϕ. We
are interested in how the function theoretic properties of ϕ interact with the operator
theoretic properties of Cϕ. One of the fundamental problems is to classify the mappings
ϕ which induce bounded or compact operators Cϕ. After such a classification is ob-
tained, we then investigate the spectrum, spectral radius, numerical range, cyclicity and
hypercyclicity, among other things, of the composition operator. These properties are
closely related with function theoretic quantities associated with the mapping ϕ. The
study of composition operators goes back to Littlewood’s famous Subordinate Princi-
ple, which shows that any composition operator is bounded on the Hardy and Bergman
spaces over the unit disk on the complex plane. On the other hand, in the multivariable
context, there are polynomial self-mappings that give rise to unbounded composition
operators on the Hardy and Bergman spaces over the unit ball. The books [28, 53]
contain essential background and fundamental results. If f is a holomorphic function
on Ω, then we can also define the weighted composition operator Wf,ϕh = f · (h ◦ϕ) for
h ∈ H. The function f is called the weight function of the operator.

In [26, 27], among other things, Cowen and his collaborators characterized self-adjoint
weighted composition operators on the Hardy space and on weighted Bergman spaces
of the unit disc. In [18], Bourdon and Narayan studied unitary and normal weighted
composition operators on the Hardy space. I have successfully brought many of these
results to higher dimensions in [41]. My approach not only overcame the complicated
setting of several variables but also provided shorter and more transparent proofs of the
results in one dimension. See Section 6 for these generalizations.

Around ten years ago I got interested in the theory of m-isometric operators. Recall
that an operator T is called an isometry if it preserves distance. That is, for all element
v, one has ‖Tv‖ = ‖v‖, or equivalently, ‖Tv‖2 − ‖v‖2 = 0. If Q is a nonzero operator
such that Q2 = 0 (that is, Q is nilpotent of order 2), then a direct calculation shows
that T = I +Q is not isometric but for any v, we have

‖T 3v‖2 − 3‖T 2v‖2 + 3‖Tv‖2 − ‖v‖2 = 0.

Such an operator is called a 3-isometry. (Note that the coefficients are exactly the
coefficients in the expansion of (x − 1)3.) Generally, a bounded operator T is called
m-isometric if

m∑
k=0

(−1)k
(
m

k

)
‖Tm−kv‖2 = 0 for all elements v.

It is clear that any 1-isometric operator is isometric. The theory of m-isometric operators
was introduced by Agler back in the early nineties and were studied in great detail by
Agler and Stankus in a series of three papers [2, 3, 4]. Recently researchers have shown
interests in algebraic properties of these operators. In [15], Bermúdez, Martinón, and
Noda proved that if A is an isometry and Q is a nilpotent operator of order s commuting
with A, then A+Q is (2s−1)-isometric. With a more elegant approach [42], I generalized
this result to more general operators which are called hereditary roots of polynomials. In
addition, in [1], undergraduate student Belal Abdullah and I investigated the structure
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of weighted shift operators that are m-isometric. We showed that such operators form
a semigroup under the Hadamard product. Section 7 describes these results in more
detail.

Section 8 discusses the notion of inner functions in weighted Hardy spaces and my
contributions to current research in this direction.

In the sections below I shall describe in more technical details the problems I have
recently worked on and plans for future research.

2. The zero product problem

The Hardy space H2 is the closure of the linear span of {zk : k = 0, 1, 2, . . .} in L2(T),
the space of square integrable functions on the unit circle. For a bounded function f
on the circle, the Toeplitz operator Tf is the compression on H2 of the multiplication
operator Mf , that is, Tf = PMf |H2 , where P is the orthogonal projection from L2(T)
onto H2. With respect to the standard orthonormal basis {1, z, z2, . . .}, each Toeplitz
operator can be represented as an infinite “Toeplitz matrix” whose entries are constant
along each descending diagonal. In their seminal work [19], Brown and Halmos showed
that if f and g are bounded functions and TgTf = 0, then one of the functions must be
zero. A more general question concerning products of several Toeplitz operators is the
so-called “zero product problem”.

Problem. Suppose f1, . . . , fN are bounded functions such that Tf1 · · ·TfN = 0. Does it
follow that one of these functions must be zero?

This problem on the Hardy space H2 was open for more than thirty years. The
affirmative answer was settled by Aleman and Vukotic [8]. Problem 2 for Toeplitz
operators on the Bergman and Segal–Bargmann spaces is described below.

2.1. Bergman space. Let D denote the open unit disc on the complex plane. The
Bergman space A2 is the Hilbert space of all analytic functions on D that are square
integrable with respect to Lebesgue area measure. For a bounded measurable function
f , the Toeplitz operator with symbol f is defined by Tfϕ = PMf (ϕ) = P (fϕ) for
ϕ ∈ A2, where P is the orthogonal projection from L2(D) onto A2.

While Problem 2 for Toeplitz operators on the Bergman space is still open even when
N = 2, some special cases have been understood. In 2001, Ahern and Čučković [6] gave
the affirmative answer if both functions are harmonic or one of the functions is radial.
(A function f is said to be radial if f(z) = f(|z|) for a.e. z.) The case of harmonic
functions was generalized to the Bergman space of the unit ball by Choe and Koo [25]
under certain assumptions about the continuity of the functions.

In [49], Luecking shows that if f is a bounded function on the unit disc such that Tf
has finite rank, then f = 0. By refining Luecking’s approach, I was able to establish the
affirmative answer to the finite-rank version of Problem 2 when all, except one, of the
functions are radial. The theorem below is the main result in [40].

Theorem 1. Let f1, . . . , fN and g1, . . . , gM be non-zero, bounded radial functions on
the unit disc. If f is bounded so that Tf1 · · ·TfNTfTg1 · · ·TgM has finite rank on A2, then
f must be zero.

Luecking’s theorem was generalized to higher dimensions by Choe [24] and indepen-
dently by Rozenblum and Shirokov [51]. Using these results, I obtained a several-variable
version of Theorem 1 in [39].
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2.2. Segal–Bargmann space. The Segal–Bargmann space F2 consists of entire func-
tions on the plane that are square integrable with respect to the Gaussian measure

dµ(z) = π−1e−|z|
2
dA(z), where dA denotes Lebesgue area measure. Toeplitz operators

on F2 are also defined as compressions of multiplication operators. In my paper with
Bauer [11], we showed that if f and g are bounded functions such that one of them
is radial and TfTg = 0 on F2, then either f or g is the zero function. This gives an
affirmative answer to Problem 2 on the Segal–Bargmann space when N = 2, provided
that one of the functions is radial. We do not know if the condition that one of the
functions be radial can be removed. On the other hand, it is quite surprising that we
found a counterexample when N = 3.

Theorem 2. There exist bounded non-zero functions f0, f1, f2 on C such that the oper-
ator Tf0Tf1Tf2 = 0 on F2.

Higher dimensional versions of our results remain true and we refer the reader to [11]
for more details.

3. Products of Toeplitz operators

In [19], Brown and Halmos also classified all pairs of commuting Toeplitz operators
on the Hardy space over the unit disc, as well as characterized all triples of Toeplitz
operators (Tf , Tg, Th) such that TfTg = Th. Such results are commonly referred to as
the Brown–Halmos theorems. Extending these results to the Bergman space setting
and to Hilbert spaces of holomorphic functions on more general domains in several
complex variables has been one of the central themes of research in the theory of Toeplitz
operators in the last few decades.

On the Bergman space over the unit disc, the first results in the spirit of the Brown–
Halmos theorems were obtained by Axler and Čučković [10], Ahern and Čučković [6],
and Ahern [5]. It was shown in these papers that Brown–Halmos theorems hold true
on the Bergman space for Toeplitz operators with bounded harmonic symbols. Guo,
Sun and Zheng [36] later studied finite rank semi-commutators and commutators of
Toeplitz operators with harmonic symbols. It was showed that semi-commutators and
commutators have finite rank if and only if they are actually zero. Čučković [29] obtained
criteria for TfTg−Thn to have finite rank, where f, g and h are bounded harmonic. More
general results in this direction were investigated in [23]. In a recent paper, Ding, Qin
and Zheng [31] provided a more complete answer to the possible rank of TfTg−Th under
the assumption that f, g are bounded harmonic and h is a C2-function and (1−|z|2)2∆h
is integrable.

In [47], Thilakarathna and I discovered a noncommutative binary operation � on
the space of polynomials in z and z̄ on the complex plane and used it to characterize
polynomial functions f and g for which the Toeplitz product TfTg is a finite rank
perturbation of another Toeplitz operator. We in fact solved the problem for finite sums
of products of two Toeplitz operators.

Theorem 3. Let Fj and Gj be polynomials in z and z̄ for j = 1, . . . , N . Then there

exists an integrable function H such that
∑N

j=1 TFjTGj −TH is of finite rank if and only

if
∑N

j=1 Fj �Gj is integrable.

Researchers have also investigated Brown–Halmos theorems in the setting of several
complex variables. A classification of pairs of commuting Toeplitz operators with pluri-
harmonic symbols on the unit ball was given by Zheng in [54]. Subsequently, Choe and
Koo [22] studied the zero product problem for Toeplitz operators on the unit ball with
harmonic symbols having continuous extensions to part of the boundary. There have
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been other results for the Hardy space over the unit sphere and Bergman space over
the polydisk. However, there has not been much progress in the unit ball case. In a
recently published paper [48], Tikaradze and I obtained several important results, which
generalized the aforementioned results. Among other things, we proved

Theorem 4. Let φ, ψ be bounded pluriharmonic functions on the unit ball.
(a) If TφTψ = Th for some smooth bounded function h, then φ̄ or ψ is holomorphic

and φψ = h.
(b) If TφTψ has a finite rank, then φ or ψ must be zero.
(c) The commutator [Tφ, Tψ] has a finite rank if and only if both φ, ψ are holomorphic,

or both φ̄, ψ̄ are holomorphic, or there are constants c1, c2, not both zero, such that
c1φ+ c2ψ is constant.

It is interesting that the approach in [48] employed techniques ranging from Partial
Differential Equations to Function and Operator Theory. We also settled an open ques-
tion aboutM-harmonic functions. Proposition 5.4 in [48] provided a version of Theorem
3 in the setting of several variables. More specifically, it shows that whenever f and
g are polynomials in z and z̄ in CN such that the sum of the degree of f in z and
the degree of g in z̄ is at most 2N + 1, then TfTg = Th for some integrable function
h. Unfortunately, the relation between h and f, g has not been well understood yet.
My plan for future research is to obtain a full version of Theorem 3 in the setting of
several complex variables. It seems that new ideas are needed. I plan to continuing my
collaboration with Tikaradze, Thilakarathna and other researchers in the pursuit of this
project.

4. The commuting problem

In the one dimensional setting, the work of Axler and Čučković [10] solves the commut-
ing problem under the additional assumption that both ϕ and ψ are harmonic functions.
In [30], among other things, Čučković and Rao resolve the case ϕ is a radial function,
which depends only on the modulus of the variable. In [38], I obtain the multivariate
version of Čučković-Rao’s result.

Let Bn denote the unit ball in Cn. The Bergman space A2(Bn) is the space of all
analytic function on Bn that are square integrable with respect to Lebesgue volume
measure. The following theorem [38] brings Čučković–Rao result to the setting of several
variables.

Theorem 5. Let f be a non-constant, bounded radial function on Bn. For any bounded
function g, the Toeplitz operators Tg and Tf commute on the Bergman space A2(Bn) if

and only if f(eiθz) = f(z) for a.e. θ ∈ R, z ∈ Bn.

Applying Theorem 5 with n = 1, we recover Čučković–Rao result. In dimensions at
least two, there are non-radial functions that satisfy the conclusion of the theorem, for
example, f(z) = z1z̄2.

Very recently, in [43], I investigate the case ϕ is a separately radial function, that is,
ϕ depends only on the modulus of each of the variables. My result not only illustrates
the rich structure of Toeplitz operators that commute with Tϕ but also illuminates an
interesting connection between the theory of Toeplitz operators and actions of the torus
group on functions defined on the unit ball. The following theorem is one of the results
in [43].

Theorem 6. Let ϕ be a separately radial bounded function on the unit ball. There then
exists a subgroup Gϕ of the torus group Tn such that for any bounded function ψ on the
unit ball, the operators Tψ and Tϕ commute if and only if ψ is invariant under Gϕ.
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The group Gϕ is given more explicitly in the main results of [43]. In particular, when ϕ
is a separately radial polynomial, Gϕ always contains the subgroup {ζ ·(1, . . . , 1) : ζ ∈ T}.

Similar to the one-dimensional case, the Segal–Bargmann space F2
n on Cn consists

of all entire functions that are square integrable with respect to the Gaussian measure

dµ(z) = (π)−ne−|z|
2
dV (z), where dV denotes the Lebesgue volume measure. We proved

in [11] an analogous result to Theorem 5 for Toeplitz operators on F2
n. Even though

some of the ideas from [38] can still be used, new techniques are required for F2
n, due to

the unboundedness of Cn.

5. Boundedness and compactness of composition operators

My work in this direction concerns composition operators acting on Hilbert spaces
whose elements are entire functions. A typical example of such spaces is the Fock
space F2(Cn) (also known as the Segal–Bargmann or Fischer space), which consists of
entire functions that are square integrable with respect to the Gaussian measure on Cn.
In [20], Carswell, MacCluer and Schuster obtained complete characterizations of the
mappings ϕ that give rise to bounded or compact composition operators Cϕ on F2(Cn).
In [44], I bring their results to a completely new ground. I investigate composition
operators on the Fock space of infinitely many variables and successfully characterize the
boundedness and compactness of such operators. My approach is totally different from
that of Carswell-MacCluer-Schuster. While they make use of the change-of-variables and
the Singular Value Decomposition of n × n matrices (which break down in the infinite
dimensional context), I use tools from the theory of positive definite kernels. My result
actually allows the composition operators to act on two different Fock spaces, which is
new even in the finite dimensional setting.

In order to state the results, we introduce some notation. For E an arbitrary complex
Hilbert space, the Fock space F2(E) is the Hilbert space of complex-valued functions
over E with reproducing kernel K(z, w) = exp(〈z, w〉). If ϕ : E1 → E2 is a mapping
between two Hilbert spaces, the composition operator Cϕ acts from F2(E2) into F2(E1)
by composing. The following theorem summarizes two important results that I obtain
in [44].

Theorem 7. Let ϕ : E1 → E2 be a mapping. Then

(a) Cϕ is bounded if and only if ϕ(z) = Az+b, where A : E1 → E2 is linear with ‖A‖ ≤ 1

and A∗b belongs to the range of (I −A∗A)1/2. Furthermore,

‖Cϕ‖ = exp
(1

2
‖v‖2 +

1

2
‖b‖2

)
.

Here, v is the vector of minimum norm that solves the equation A∗b = (I−A∗A)1/2v.
(b) Cϕ is compact if and only if ϕ(z) = Az + b, where A : E1 → E2 is a linear compact

operator with ‖A‖ < 1 and b ∈ E2.

My collaborators and I [32] recently initiated the study of composition operators
on a more general class of Hilbert spaces of entire functions in several variables. Let
β = {βm}∞m=0 be a sequence of positive real numbers with lim

m→∞
β1/mm =∞. The Hilbert

space Hβ(Cn) consists of entire functions whose homogeneous expansion f =
∑

m≥0 pm
satisfies

‖f‖2β =
∑
m≥0

β2m · ‖pm‖2L2 <∞,

where ‖ · ‖L2 denotes L2-norm with respect to the surface measure on the unit sphere.
The properties of composition operators Cϕ on Hβ(Cn) depend heavily on the behavior
of the weight sequence β. We show that the boundedness of Cϕ forces ϕ to be an
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affine mapping ϕ(z) = Az + b, and the compactness of Cϕ requires ‖A‖ < 1. However,
depending on the weight β, additional interaction between the operator A and the vector
b is necessary. Our results greatly generalize several one-dimensional results obtained
earlier by other authors [21, 37]. In addition, the results illuminate a surprising difference
between the single variable and the multivariable contexts.

6. Self-adoint and unitary weighted composition operators

For any real number γ > 0, let Hγ denote the Hilbert space of analytic functions on
the unit ball Bn with reproducing kernel

Kγ
z (w) = Kγ(w, z) =

1

(1− 〈w, z〉)γ
for z, w ∈ Bn.

For special values of γ we may identify Hγ with well-known spaces. For γ = n, Hn can
be identified with the Hardy space. For γ > n, Hγ is a weighted Bergman space of the
unit ball.

For ϕ a holomorphic map from Bn into itself and f a holomorphic function on Bn, we
define the weighted composition operator Wf,ϕ by Wf,ϕh = f · (h ◦ ϕ) for h ∈ Hγ . In
a recent paper [41], I generalized the work of Cowen et al., and Bourdon and Narayan
on self-adjoint and unitary Wf,ϕ on the Hardy and weighted Bergman spaces of the
unit disc to the unit ball. Descriptions of all self-adjoint and all unitary weighted
composition operators on Hγ were obtained. My approach, which made essential use
of the reproducing kernel functions, also provided simplified and transparent proofs of
the results in one dimension. I list here the results and refer the reader to [41] for more
details.

Theorem 8. For any γ > 0, the operator Wf,ϕ is a non-zero, self-adjoint, bounded
operator on Hγ if and only if there is a vector c ∈ Bn, a self-adjoint linear operator A

on Cn and a real number α such that f = αKγ
c and ϕ(z) = c+Az

1−〈z,c〉 for z ∈ Bn.

Theorem 8 in particular says that in order for Wf,ϕ to be self-adjoint on Hγ , the
inducing map ϕ must be a linear fractional map of the unit ball and ϕ = ϕ×, where ϕ×

is the Krein adjoint of ϕ.
The next result shows that the class of unitary weighted composition operators on Hγ

coincides with the class of co-isometric weighted composition operators. We also have a
complete description of such operators.

Theorem 9. Suppose that γ > 0 and the operator Wf,ϕ is bounded on Hγ. Then TFAE

(a) Wf,ϕ is a unitary on Hγ.
(b) Wf,ϕ is a co-isometry (that is, W ∗f,ϕ is an isometry) on Hγ.

(c) ϕ is an automorphism of Bn and f = λkγ
ϕ−1(0)

for some complex number λ with

|λ| = 1. Here for a ∈ Bn, kγa = Kγ
a/‖Kγ

a‖ is the normalized reproducing kernel
function at a.

7. The structure of m-isometric commuting tuples

In the studies of linear operators, the class of isometries plays an indispensable role.
On Hilbert spaces, isometries can be characterized as operators satisfying

−I + T ∗T = 0,

where T ∗ denotes the adjoint operator of T . Generalizing this operator equation, Agler
introduced the notion of m-isometric operators back in the eighties in connection with
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his studies of subjordan operators and Toeplitz conjugacy classes. A bounded linear
operator T on a Hilbert space is m-isometric if it satisfies

m∑
k=0

(−1)m−k
(
m

k

)
T ∗kT k = 0.

The 1-isometric operators are exactly the isometries. In a series of papers [2, 3, 4],
Agler and Stankus gave an extensive study of spectral theory and representations of
m-isometric operators. It is only recently that researchers [33, 16, 15] have begun in-
vestigating algebraic properties of m-isometries and several interesting phenomena have
been discovered. Of particular interest is a surprising result by Bermúdez, Martinón,
and Noda [15] which says that if S is isometric and N is nilpotent of order n commuting
with S, then S +N is (2n− 1)-isometric. Their proof is quite lengthy with many com-
binatoric manipulations. With a completely different proof using algebraic approach, I
[42] generalized the result to arbitrary m-isometries as well as hereditary operator roots
of polynomials.

Let p be a polynomials in z and z̄ with complex coefficients given by p(z) =
∑

k,` ak,`z̄
kz`.

For any bounded linear operator T , we define

p(T ) =
∑
k,`

ak,`T
∗kT `.

This functional calculus was termed the hereditary functional calculus and was studied
by Agler in the eighties. We say that T is a (hereditary) root of p if p(T ) = 0. It is
can be checked that m-isometries are hereditary roots of (z̄z− 1)m. My contribution to
the investigation of nilpotent perturbations of hereditary roots is the following result in
[42].

Theorem 10. Let p be a polynomial and A and Q are commuting operators on a
Hilbert space. If pm(A) = 0 and Qs = 0 for some non-negative integers m and s,
then pm+2s−2(A+Q) = 0.

Setting p(z) = z̄z − 1, we recover Bermúdez-Martinón-Noda result. Choosing other
polynomials gives interesting results that are discussed in greater detail in [42].

It is well known that the unilateral shift on the Hardy space is an isometry. On
the other hand, the Dirichlet shift is a 2-isometry [50]. Several researchers have been
interested in characterizing weighted shift operators that are m-isometric. A complete
characterization was first obtained by Bermudéz et al. [14]. However, their result
appears difficult to apply. In a research project in the Summer of 2014, undergraduate
student Belal Abdullah and I investigated this problem further and we obtained an
equivalent but more transparent criterion for a weighted shift operator to bem-isometric.
We obtain in [1] the following result.

Theorem 11. Let S be a weighted shift operator with weight sequence {wn}. Then S is
an m-isometry if and only if there is a polynomial p of degree at most m− 1 such that
|wn|2 = p(n+ 1)/p(n) for all n.

As a consequence, we show that anym-isometric weighted shift operator is a Hadamard
product of 2-isometries and 3-isometries. We also characterize weighted shift operators
whose powers are m-isometric.

In the context of multivariable operator theory, Gleason and Richter in [35] introduced
and studied spectral properties of m-isometric commuting tuples. My approach in [42]
can also be used to show that the sum of an m-isometric tuple with a commuting
nilpotent tuple of order n is (2n+m− 2)-isometric.
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It has been known from the work of Agler–Stankus that each m-isometry T on a finite
dimensional space has a simple decomposition: T = U + N , where U is an isometry
and T is a nilpotent operator commuting with U . It was an open question for some
time whether such representation still holds in the setting of m-isometric tuples. In a
recent publication [45] (Journal of Functional Analysis), I proved a very general result,
which answered this question in the affirmative. To state the result, we first recall
some notation. For any polynomial p(z) =

∑
α,β cα,β z̄

αzβ over z ∈ Cd and tuple T =

[T1, . . . , Td] of commuting operators on a Hilbert space, define p(T) =
∑

α,β cα,β(T ∗)αT β.
Then the set

J (T) =
{
p : p(T) = 0

}
.

turns out to be an ideal of C[z̄, z]. Let Rad(J (T)) be the corresponding radical ideal.
Note that T is an m-isometric tuple if and only if (1 − |z|2)m belongs to J (T). In
such a case, (1 − |z|2) is an element of Rad(J (T)). One of the main results in [45]
is the following theorem, which in particular, implies the required decomposition for
m-isometric tuples.

Theorem 12. Let T be a tuple of commuting algebraic operators. There then exists
a decomposition T = U + N such that N is a nilpotent tuple commuting with U and
Rad(J (T)) ⊆ J (U).

8. Inner functions on weighted Hardy spaces

Inner functions are bounded holomorphic functions on the unit disk whose boundary
values have absolute value one almost everywhere. Equivalently, those are holomorphic
functions f with unit norm on the Hardy space H2 such that zmf ⊥ f for all m ≥ 1. The
celebrated Beurling’s Theorem asserts that any closed subspace of H2 that is invariant
for the operator of multiplication by z is given by ϕH2 for some inner function ϕ.
Aleman, Richter and Sundberg [7] proved an analogue of Beurling’s Theorem for the
Bergman space A2: any invariant subspace of A2 is generated by the so-called wandering
subspace. Their work involves a class of functions called A2-inner functions that satisfy
the norm and orthogonality constraints as above.

Due to its importance, the notion of inner functions has been generalized to weighted
Hardy spaces. These are Hilbert spaces of holomorphic functions on the unit disk on
which monomials form an orthogonal basis. Recently, Bénéteau et al. [13, 12] studied
inner functions and examined the connections between them and optimal polynomial
approximants. They described a method to construct inner functions that are analogues
of finite Blaschke products with simple zeroes. In [52], Seco discussed inner functions
on Dirichlet-type spaces and characterized such functions as those whose norm and
multiplier norm are both equal to one. In [46] and [34], Felder and I obtained several new
operator and function theoretic characterizations of inner functions on weighted Hardy
spaces, which extend several previously known results. We described a construction of
analogues of finite Blaschke products, using kernel functions. Our results complement
those in [12]. It is striking that the proofs in [34] do not rely on orthogonality of
monomials, which was thought to be essential in the study of inner and generalized
inner functions.

9. Some future projects

9.1. It follows from their matrix representations that non-zero Toeplitz operators on the
Hardy space are never compact. In the contrary, there exist lots of compact Toeplitz
operators on the Bergman space A2. On the other hand, the question about the existence
of non-zero, finite rank Toeplitz operators on A2 was open for quite some time. In 2008,
Luecking [49] answered the question in the negative. He in fact proved a more general
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result, which also implies that if f is a bounded function with compact support on C
such that the operator Tf has finite rank on the Segal–Bargmann space, then f must be
zero. Borichev and Rozenblum [17] were able to remove the restriction on the support of
f . I plan to make use of this result to study the finite rank product TfTg. As discussed
in Section 2, this problem is still open. My first goal is to tackle the case where one of
the functions is radial.

9.2. Back in 2003, B. Carswell et al. [20] studied composition operators on the Segal–
Bargman space F2

n over Cn. They found necessary and sufficient conditions on the
mapping ϕ for which Cϕ is bounded or compact on F2

n. They also proved a norm
formula for Cϕ. In [44], I generalized their results to Segal–Bargmann spaces over
arbitrary Hilbert spaces. The approach in [20], which relies on many tools only available
in finite dimensions, does not work in this setting. I employed a different approach that
makes extensive use of kernel functions. I also investigated spectral properties of these
composition operators. I would like to extend the results in [41] to weighted composition
operators on F2

n.

9.3. Even though isometric composition operators on the Hardy space over the unit
disc was completely characterized by Nordgren in 1968, much less has been known on
the Hardy space H2(Sn) over the unit sphere in higher dimension. Certain examples
of isometric composition operators Cϕ on H2(Sn) have been known but a complete
characterization is still lacking. I am currently investigating particular classes of the
symbol ϕ for which the problem is more tractable. A future plan is to characterize
isometric products CϕC

∗
ψ and C∗ψCϕ in several variables.
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[10] Sheldon Axler and Željko Čučković, Commuting Toeplitz operators with harmonic symbols, Integral
Equations Operator Theory 14 (1991), no. 1, 1–12. MR 1079815 (92f:47018)

[11] Wolfram Bauer and Trieu Le, Algebraic properties and the finite rank problem for Toeplitz operators
on the Segal-Bargmann space, J. Funct. Anal. 261 (2011), 2617–2640.
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[13] Catherine Bénéteau, Dmitry Khavinson, Constanze Liaw, Daniel Seco, and Alan A. Sola, Orthogonal
polynomials, reproducing kernels, and zeros of optimal approximants, J. Lond. Math. Soc. (2) 94
(2016), no. 3, 726–746. MR 3614926

T. Le 11 August 17, 2023
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