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Abstract. For a bounded measurable function f on the open unit disk D, let
Tf denote the corresponding Toeplitz operator on the Bergman space A2(D).
A recent result of D. Luecking shows that if Tf has finite rank, then f must
be the zero function. Using a refined version of this result, we show that if
all, except possibly one, of the functions f1, . . . , fm are radial and Tf1 · · ·Tfm

has finite rank, then one of these functions must be zero.
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1. Introduction

As usual, let D denote the unit disk and T denote the unit circle on the complex
plane C. Let dA denote the Lebesgue measure on C which is normalized so that
the unit disk has total mass 1. We have dA(z) = 1

πdxdy, where z = x + iy
for x, y real numbers. We write L2 for L2(D,dA). The Bergman space A2 is the
subspace of L2 that consists of all holomorphic functions. It is well known that
A2 is a closed subspace of L2. The standard orthonormal basis for A2 is given by
{em : m = 0, 1, . . .}, where em(z) =

√
m+ 1 zm for non-negative integers m. Let

P denote the orthogonal projection from L2 onto A2. For any function f ∈ L2,
the Toeplitz operator with symbol f is denoted by Tf , which is densely defined on
A2 by Tfϕ = P (fϕ) for ϕ ∈ H∞, the space of all bounded holomorphic functions
on D. The operator Tf is in fact an integral operator given by the formula

(Tfϕ)(z) =
∫

D

f(w)ϕ(w)
(1− w̄z)2

dA(w), for z ∈ D, ϕ ∈ H∞.

If f is a bounded function then Tf is a bounded operator on A2 with ‖Tf‖ ≤
‖f‖∞ and (Tf )∗ = Tf̄ . However, unbounded symbols can also give rise to bounded
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Toeplitz operators. In fact, since Tf is an integral operator with kernel
f(w)

(1− w̄z)2
,

z, w ∈ D, we see that if f ∈ L2 is supported in a compact subset of D, then Tf is
a compact operator on A2.

A function f on D is called a radial function if f(z) = f(|z|) for almost all
z ∈ D. If f ∈ L2 is radial, then using polar coordinates, we see that

〈Tfem, ek〉 =
√

(m+ 1)(k + 1)
∫

D
f(z)zmz̄kdA(z)

=

{
0 if m 6= k

(m+ 1)
∫ 1

0
2f(t)t2m+1dt if m = k

=

{
0 if m 6= k

(m+ 1)
∫ 1

0
f(r1/2)rmdr if m = k.

This shows that Tf is diagonal with respect to the standard orthonormal basis.
The eigenvalues of Tf are given by

ω(f,m) = 〈Tfem, em〉 = (m+ 1)
∫ 1

0

f(r1/2)rmdr, m = 0, 1, . . . . (1.1)

It follows from Stone-Weierstrass’s theorem that if f ∈ L2 such that Tf is
the zero operator, then f must vanish almost everywhere in D. On the other hand,
the problem of determining whether there exists a nontrivial finite-rank Toeplitz
operator on A2 was open for quite some time. Recently D. Luecking [9] has found
an elegant proof that gives the negative answer to this problem.

There is an extensive literature on Toeplitz operators on the Hardy space H2

of the unit circle. We refer the reader to [10] for definitions of H2 and their Toeplitz
operators. In the context of Toeplitz operators on H2, it was showed by A. Brown
and P.R. Halmos [3] back in the 1960’s that if f and g are bounded functions on
the unit circle then TgTf is another Toeplitz operator if and only if either f or
ḡ is holomorphic. From this it is readily deduced that if f, g ∈ L∞(T) such that
TgTf = 0, then one of the symbols must be the zero function. In contrast with this,
for Toeplitz operators on the Bergman space, it has not been known if it is true that
for f, g ∈ L∞(D), TgTf = 0 implies g or f is the zero function. Affirmative answers
have been obtained by researchers only in special cases. In [1], P. Ahern and Ž.
Čučković answered the question affirmatively under the assumption that both f
and g are bounded harmonic functions on D. Later in [4], Čučković was able to show
that if f, g are bounded such that f is harmonic and g(reiθ) =

∑N
m=−∞ gk(r)eimθ

for z = reiθ ∈ D, then TgTf = 0 implies either f = 0 or g = 0. The case one of the
symbols is a bounded radial function has also been understood. See [2] and [7] for
more details. In fact, in [7], the author was able to show that if all, except possibly
one, of the functions f1, . . . , fM are bounded radial functions and Tf1 · · ·TfM

= 0
then one of these functions must be zero.
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A more general problem than the above zero product problem is the finite-
rank product problem. Recall that the above mentioned theorem of Luecking shows
that if f ∈ L2 and Tf has finite rank, then f is the zero function. What happens
if TgTf has finite rank, where f and g are bounded measurable functions on the
unit disk? The answer to this question seems to be still far from completed but the
following important case has been understood: If f and g are bounded harmonic
functions, then one of them must be the zero function (see [6]). The purpose of
this paper is to report the same answer in some other special cases.

In the first part of the paper, we use Luecking’s theorem to show that if
f, g are functions in L2, where f satisfies a certain condition, and TgTf (which is
densely defined on A2) has finite rank, then either f = 0 or g = 0. In the second
part of the paper, we prove a refined version of Luecking’s theorem and use it
to show that if f1, . . . , fm1 and g1, . . . , gm2 are radial functions in L∞ and f is a
function in L2 such that Tg1 · · ·Tgm2

TfTf1 · · ·Tfm1
has finite rank, then one of the

above functions must be zero.

2. Finite-rank products of two Toeplitz operators

We begin this section with a detailed discussion of the decomposition L2 =⊕
m∈ZReimθ, where

R = {u : [0, 1)→ C such that
∫ 1

0

|u(r)|2rdr <∞}.

This decomposition has been used by Čučković and Rao in their studies of Toeplitz
operators (see Section 2 in [5]). Let f ∈ L2(D). Then for almost all r ∈ [0, 1), the
function ζ 7→ f(rζ) for ζ ∈ T is in L2(T, 1

2πdθ). Since {ζm : m ∈ Z} is an
orthonormal basis for L2(T, 1

2πdθ), we have

f(rζ) =
∞∑

m=−∞

( 1
2π

∫ 2π

0

f(reiθ)e−imθdθ
)
ζm,

where the sum takes place in L2(T). For m ∈ Z, define

fm(r) =
1

2π

∫ 2π

0

f(reiθ)e−imθdθ, 0 ≤ r < 1.

Then the above representation becomes (with ζ = eiθ),

f(reiθ) =
∞∑

m=−∞
fm(r)eimθ. (2.1)
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This representation holds for almost all r ∈ [0, 1) and for such r, the sum on the
right hand side takes place in L2(T). Now we have

‖f‖2L2(D) =
∫ 1

0

( 1
2π

∫ 2π

0

|f(reiθ)|2dθ
)

(2r)dr

=
∫ 1

0

( ∞∑
m=−∞

|fm(r)|2
)

(2r)dr

=
∞∑

m=−∞

∫ 1

0

|fm(r)|2(2r)dr.

This shows that fm ∈ R for all m ∈ Z and the right hand side of (2.1) converges
in L2(D). Therefore, the representation (2.1) in fact takes place in L2(D).

The following theorem is our first result in the paper. It has been brought
to our attention recently that this result was also independently obtained by I.
Louhichi, N.V. Rao and A. Yousef in [8].

Theorem 2.1. Suppose f ∈ L2 and f(reiθ) =
M∑

m=−∞
fm(r)eimθ for z = reiθ, where M

is an integer. Assume that
∫ 1

0
fM (r)rkdr 6= 0 for all k ≥ N , where N is a positive

integer. If g ∈ L2 such that TgTf has finite rank, then g is the zero function.

Proof. Recall that A2 has the orthonormal basis {em : m = 0, 1, . . .}, where
em(z) =

√
m+ 1 zm for non-negative integers m. For any non-negative integers

k, l, we have

〈Tfek, el〉 =
√

(k + 1)(l + 1)
∫

D
f(z)zkz̄ldA(z)

=
√

(k + 1)(l + 1)
∫ 1

0

( 1
2π

∫ 2π

0

f(reiθ)ei(k−l)θdθ
)
rk+l(2r)dr

=
√

(k + 1)(l + 1)
∫ 1

0

2fl−k(r)rk+l+1dr.

By assumption about f , 〈Tfek, el〉 = 0 whenever l − k > M . Thus for k ∈ N such
that k +M ≥ 1, we have

Tfek =
∞∑
l=0

〈Tfek, el〉el

=
k+M∑
l=0

(√
(k + 1)(l + 1)

∫ 1

0

2fl−k(r)rk+l+1dr
)
el

=
√

(k + 1)(M + k + 1)
(∫ 1

0

2fM (r)r2k+M+1dr
)
ek+M

+
√
k + 1

k+M−1∑
l=0

(√
l + 1

∫ 1

0

2fl−k(r)rk+l+1dr
)
el
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This shows that when k+M ≥ 1 and 2k+M + 1 ≥ N , ek+M can be written as a
linear combination of {Tfek} ∪ {e0, . . . , ek+M−1}.

Now suppose TgTf has finite rank and let {ϕ1, . . . , ϕK} be a set that spans
TgTf (P), where P is the space of all holomorphic polynomials in the variable z.
Then for any non-negative integer k with k+M ≥ 1 and 2k+M + 1 ≥ N , we see
that Tgek+M is a linear combination of {ϕ1, . . . , ϕK} ∪ {Tg(e0), . . . , Tg(ek+M−1)}.
From this, it follows that Tg is a finite-rank operator. By Luecking’s theorem [9]
or a refined version of it (Theorem 3.1 in Section 3), we conclude that g is the zero
function. �

Remark 2.2. If f(z) = h̄(z) + p(z, z̄) where h ∈ A2 and p a polynomial in two
variables, then either f is the zero function or it satisfies the hypothesis of Theorem
2.1. Therefore, Theorem 2.1 shows that if TgTf is of finite rank for some g ∈ L2

then either f or g is the zero function.

3. A refined Luecking’s theorem and finite-rank Toeplitz products

We begin this section with a refined version of Luecking’s theorem whose proof is
greatly influenced by Luecking’s argument. For the rest of the paper, let P denote
the space of all holomorphic polynomials in the variable z.

Theorem 3.1. Let S ⊂ N (N denotes the set of all non-negative integers) so that∑
s∈S

1
s+1 < ∞. Let N be the subspace of P spanned by the monomials {zm :

m ∈ N\S} and let N ∗ = {ḡ : g ∈ N}. Let ν be a complex regular Borel measure
on C with compact support. Let Tν be the operator from N to the space of linear
functionals on N ∗ defined by Tνf(ḡ) =

∫
C fḡdν for all f, g ∈ N . Then Tν has

finite rank if and only if the support of ν is finite.

Proof. For any z ∈ C, let δz denote the point mass measure concentrated at z.
Since Tν−ν({0})δ0 = Tν − ν({0})Tδ0 , we see that Tν has finite rank if and only
if Tν−ν({0})δ0 has finite rank. So without loss of generality, we may assume that
ν({0}) = 0.

If the support of ν is contained in a finite set {z1, . . . , zN−1} for some N ≥ 2,
then Tν =

∑N−1
j=1 ν({zj})Tδzj

. Hence Tν has rank less than N .
Conversely, suppose Tν has rank less than N . Following Luecking’s argument

in [9, p. 3], we see that for any f1, . . . , fN and g1, . . . , gN in N ,∫
Cn

(
f1(z1) · · · fN (zN )

)
det(ḡi(zj))dνN (Z) = 0, (3.1)

where Z = (z1, . . . , zN ) ∈ CN and νN is the product of N copies of ν on CN .
Let m1, . . . ,mN and k1, . . . , kN be non-negative integers. Let

Z = {s ∈ N : s+mj /∈ S and s+ kj /∈ S for all 1 ≤ j ≤ N}

= N\
(

(∪Nj=1(S −mj)) ∪ (∪Nj=1(S − kj))
)
.
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Since
∑
s∈S

1
s+1 <∞, we have

∑
s∈N\Z

1
s+1 <∞. This shows that

∑
s∈Z

1
s+ 1

=∞. (3.2)

For any s ∈ Z, the monomials fj(z) = zmj+s and gj(z) = zkj+s for j = 1, . . . , N
are in N . So we may use (3.1) to get

0 =
∫

Cn

(
zm1+s

1 · · · zmN +s
N

)
det(z̄ki+s

j )dνN (Z)

=
∫

Cn

(
zm1

1 · · · zmN

N

)
det(z̄ki

j )|z1 · · · zN |2sdνN (Z)

=
∫

Cn\W

(
zm1

1 · · · zmN

N

)
det(z̄ki

j )|z1 · · · zN |2sdνN (Z), (3.3)

where W = {(z1, . . . , zN ) ∈ CN : z1 · · · zN = 0}. The last identity follows from the
fact that νN (W ) = 0.

Let K denote the open right half plane consisting of all w with <(w) > 0 and
let K denote the closure of K in C. For any w ∈ K, define

F (w) =
∫

Cn\W

(
zm1

1 · · · zmN

N

)
det(z̄ki

j )|z1 · · · zN |2wdνN (Z).

Here, for a positive number t and a complex number w, tw = exp(w log t), where
log is the principal branch of the logarithmic function.

Suppose the measure ν is supported in the disk D(0, R) of radius R > 0
centered at the origin on the complex plane. Then νN is supported in the polydisk
DN (0, R) of the same radius centered at the origin in CN . For any w ∈ K and any
Z = (z1, . . . , zN ) in the above polydisk, we have∣∣|z1 · · · zN |2w

∣∣ = |z1 · · · zN |2<(w) ≤ R2N<(w).

Therefore,

|F (w)| =
∣∣∣ ∫
DN (0,R)\W

(
zm1

1 · · · zmN

N

)
det(z̄ki

j )|z1 · · · zN |2wdνN (Z)
∣∣∣ ≤ CR2N<(w),

where C is a constant independent of w. It follows that F is not only defined
but also continuous on K. An application of Morera’s theorem shows that F is
holomorphic on K. Let G(w) = F (w)R−2Nw for w ∈ K, then G is continuous,
bounded on K and holomorphic on K. Now define

H(ζ) = G
(1 + ζ

1− ζ

)
, for |ζ| < 1.

Then H is a bounded holomorphic function on the unit disk. For any s ∈ Z,
(3.3) and the definitions of F and G show that G(s) = F (s) = 0, which implies
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H( s−1
s+1 ) = 0. Now∑

s∈Z
s≥1

(1− |s− 1
s+ 1

|) =
∑
s∈Z
s≥1

2
s+ 1

=∞ by (3.2).

Corollary to Theorem 15.23 in [11] then shows that H is identically zero on the
unit disk. Hence G and F are identically zero in K. In particular, F (0) = 0, which
implies that ∫

Cn

(
zm1

1 · · · zmN

N

)
det(z̄ki

j )dνN (Z) = 0.

Since m1, . . . ,mN and k1, . . . , kN were arbitrary non-negative integers, we con-
clude that (3.1) holds for all f1, . . . , fN and g1, . . . , gN in P. Following Luecking’s
argument again [9, Section 4 and 5], we see that the support of ν is finite. �

Let S and N be as in the hypothesis of Theorem 3.1. Let M denote the
subspace of P spanned by {zm : m ∈ S}. Let M̄ (respectively, N̄ ) denote the
closure of M (respectively, N ) in A2.

Corollary 3.2. Suppose f ∈ L2 so the operator Tf is densely defined on A2. If
Tf (N ) ⊂ Span(M̄ ∪ {ϕ1, . . . , ϕN}), where ϕ1, . . . , ϕN ∈ A2, then f is the zero
function.

Proof. Let PM̄ (respectively, PN̄ ) denote the orthogonal projection from A2 onto
M̄ (respectively, N̄ ). Then we have PN̄ = 1−PM̄ and hence, PM̄PN̄ = PN̄PM̄ =
0. By replacing ϕj by ϕj − PM̄ϕj if necessary, we may assume that ϕj ⊥ M for
1 ≤ j ≤ N . By using the Gram-Schmidt process if necessary, we may assume that
the vectors ϕ1, . . . , ϕN form an orthonormal set (we may have fewer vectors after
using Gram-Schmidt process but let us still denote by N the total number of these
vectors).

For any p in N , we have Tfp = PM̄Tfp +
N∑
j=1

〈Tfp, ϕj〉ϕj . This shows that

PN̄ (Tfp) =
N∑
j=1

〈Tfp, ϕj〉PN̄ϕj =
N∑
j=1

〈Tfp, ϕj〉ϕj =
N∑
j=1

〈fp, ϕj〉ϕj . Then for any q

in N , ∫
D
fpq̄ dA = 〈Tfp, q〉 = 〈PN̄ (Tfp), q〉 =

N∑
j=1

〈fp, ϕj〉〈ϕj , q〉.

Let dν = fdA. From the above identities, we see that the map Tν from N into
the space of linear functionals on N ∗ defined by Tνp(q̄) =

∫
D pq̄dν =

∫
D fpq̄dA for

p, q ∈ N is of finite rank. Now Theorem 3.1 shows that the support of ν is finite,
which implies that f(z) = 0 for almost all z ∈ D. �

As an application of Corollary 3.2, we obtain the following result concerning
finite-rank products of Toeplitz operators when all, except possibly one, of the
operators are diagonal with respect to the standard orthonormal basis.
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Theorem 3.3. Suppose f1, . . . , fm1 and g1, . . . , gm2 are bounded measurable radial
functions, none of which is the zero function. Suppose f is a function in L2 such
that Tg1 · · ·Tgm2

TfTf1 · · ·Tfm1
(which is densely defined on A2) is of finite rank,

then f must be the zero function.

Proof. For any h ∈ {f1, . . . , fm1 , g1, . . . , gm2}, the operator Th is diagonal with
eigenvalues ω(h,m) given by (1.1) for m = 0, 1, . . . . Let Z(h) = {m ∈ N :
ω(h,m) = 0}. Since h is not the zero function, Müntz-Szász’s theorem (see [11,
Theorem 15.26]) shows that

∑
m∈Z(h)

1
m+1 <∞.

Put S = Z(f1)∪· · ·∪Z(fm1)∪Z(g1)∪· · ·∪Z(gm2). Then
∑
m∈S

1
s+1 <∞. LetN

(respectively,M) be the subspace of P spanned by {em : m ∈ N\S} (respectively,
{em : m ∈ S}). Recall that P denotes the space of all holomorphic polynomials in
the variable z.

Put S1 = Tf1 · · ·Tfm1
and S2 = Tg1 · · ·Tgm2

. For ϕ ∈ A2,

S2ϕ = Tg1 · · ·Tgm2

( ∞∑
j=1

〈ϕ, ej〉ej
)

=
∞∑
j=1

ω(g1, j) · · ·ω(gm2 , j)〈ϕ, ej〉ej .

Hence, if S2ϕ = 0, then ω(g1, j) · · ·ω(gm2 , j)〈ϕ, ej〉 = 0 for all j ∈ N. It then
implies that 〈ϕ, ej〉 = 0 whenever j ∈ N\S. Thus, ker(S2) ⊂ M̄. On the other
hand, if j ∈ N\S then ω(f1, j) · · ·ω(fm1 , j) 6= 0. Therefore,

ej =
1

ω(f1, j) · · ·ω(fm1 , j)
Tf1 · · ·Tfm1

ej =
1

ω(f1, j) · · ·ω(fm1 , j)
S1ej .

This shows that N ⊂ S1(N ) ⊂ S1(P). So the domain of the operator S2TfS1

contains P, which is dense in A2.
Now suppose that S2TfS1(P) is of finite dimensions, spanned by the set

{u1, . . . , uN}. Let vj ∈ A2 such that S2vj = uj for j = 1, . . . , N . It then follows
that TfS1(P) is contained in Span(ker(S2)∪ {v1, . . . , vN}), which is a subspace of
Span(M̄ ∪ {v1, . . . , vN}). But as we have seen above, N is a subspace of S1(P).
So we have Tf (N ) ⊂ Span(M̄ ∪ {v1, . . . , vN}). Corollary 3.2 then implies that f
is the zero function. �
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