
SELF-ADJOINT, UNITARY, AND NORMAL WEIGHTED
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Abstract. We study weighted composition operators on Hilbert spaces
of analytic functions on the unit ball with kernels of the form (1− 〈z, w〉)−γ
for γ > 0. We find necessary and sufficient conditions for the adjoint of
a weighted composition operator to be a weighted composition operator
or the inverse of a weighted composition operator. We then obtain char-
acterizations of self-adjoint and unitary weighted composition operators.
Normality of these operators is also investigated.

1. Introduction

Let Bn denote the open unit ball in Cn. For H a Banach space of analytic
functions on Bn and ϕ an analytic self-map of Bn, the composition operator
Cϕ is defined by Cϕh = h ◦ ϕ for h in H for which the function h ◦ ϕ
also belongs to H. Researchers have been interested in studying how the
function theoretic behavior of ϕ affects the properties of Cϕ on H and vice
versa. When H is the classical Hardy space or a weighted Bergman space
of the unit disk, it follows from Littlewood Subordination Theorem that
Cϕ is bounded on H (see, for example, [10, Section 3.1]). On the other
hand, the situation becomes more complicated in higher dimensions. For
n ≥ 2, there exist unbounded composition operators on the Hardy space
and Bergman spaces of Bn, even with polynomial mappings. The interested
reader is referred to [10, Chapter 3] for these examples and certain necessary
and sufficient conditions for the boundedness and compactness of Cϕ.

Let f : Bn → C be an analytic function and let ϕ be as above. The
weighted composition operator Wf,ϕ is defined by Wf,ϕh = f · (h ◦ ϕ) for
all h ∈ H for which the function f · (h ◦ ϕ) also belongs to H. Weighted
composition operators have arisen in the work of Forelli [13] on isometries of
classical Hardy spaces Hp and in Cowen’s work [5, 6] on commutants of an-
alytic Toeplitz operators on the Hardy space H2 of the unit disk. Weighted
composition operators have also been used in descriptions of adjoints of com-
position operators (see [7] and the references therein). Boundedness and
compactness of weighted composition operators on various Hilbert spaces
of analytic functions have been studied by many mathematicians (see, for
example, [4, 12, 15, 17] and references therein). Recently researchers have
started investigating the relations between weighted composition operators
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and their adjoints. Cowen and Ko [9] and Cowen, Gunatillake and Ko
[8] characterize self-adjoint weighted composition operators and study their
spectral properties on weighted Hardy spaces on the unit disk whose kernel
functions are of the form Kw(z) = (1−wz)−κ for κ ≥ 1. In [3], Bourdon and
Narayan study normal weighted composition operators on the Hardy space
H2. They characterize unitary weighted composition operators and apply
their characterization to describe all normal operators Wf,ϕ in the case ϕ
fixes a point in the unit disk.

The purpose of the current paper is to study self-adjoint, unitary and
normal weighted composition operators on a class of Hilbert spaces H of
analytic functions on the unit ball. We characterize Wf,ϕ whose adjoint is
a weighted composition operator or the inverse of a weighted composition
operator. As a consequence, we generalize certain results in [3, 9, 8] to higher
dimensions and also obtain results that have not been previously known in
one dimension.

For any real number γ > 0, let Hγ denote the Hilbert space of analytic
functions on Bn with reproducing kernel functions

Kγ
z (w) = Kγ(w, z) =

1
(1− 〈w, z〉)γ

for z, w ∈ Bn.

By definition, Hγ is the completion of the linear span of {Kγ
z : z ∈ Bn}

with the inner product 〈Kγ
z ,K

γ
w〉 = Kγ(w, z) (this is indeed an inner product

due to the positive definiteness of Kγ(w, z)). It is well known that any
function f ∈ Hγ is analytic on Bn and for z ∈ Bn, we have f(z) = 〈f,Kγ

z 〉.
For any multi-index m = (m1, . . . ,mn) ∈ Nn

0 (here N0 denotes the set of
non-negative integers) and z = (z1, . . . , zn) ∈ Bn, we write zm = zm1

1 · · · zmnn .
It turns out that Hγ has an orthonormal basis consisting of constant multi-
plies of the monomials zm, for m ∈ Nn

0 . The spaces Hγ belong to the class
of weighted Hardy spaces introduced by Cowen and MacCluer in [10, Sec-
tion 2.1]. They are called (generalized) weighted Bergman spaces by Zhao
and Zhu in [18] because of their similarities with other standard weighted
Bergman spaces on the unit ball. In fact, for γ > n, Hγ is the weighted
Bergman space A2

γ−n−1(Bn), which consists of all analytic functions that
are square integrable with respect to the weighted Lebesgue measure (1 −
|z|2)γ−n−1dV (z), where dV is the Lebesgue volume measure on Bn. If γ = n,
Hn is the usual Hardy space on Bn. When n ≥ 2 and γ = 1, H1 is the so-
called Drury-Arveson space, which has been given a lot of attention lately
in the study of multi-variable operator theory and interpolation (see [1, 2]
and the references therein). For arbitrary γ > 0, Hγ coincides with the
space A2

γ−n−1(Bn) in [18] (we warn the reader that when γ < n, the space
A2
γ−n−1(Bn) is not defined as the space of analytic functions that are square

integrable with respect to (1 − |z|2)γ−n−1dV (z), since the latter contains
only the zero function).
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2. Bounded weighted composition operators

As we mentioned in the Introduction, the composition operator Cϕ is not
always bounded on Hγ of the unit ball Bn when n ≥ 2. On the other hand,
if ϕ is a linear fractional self-map of the unit ball, then it was shown by
Cowen and MacCluer [11] that Cϕ is bounded on the Hardy space and all
weighted Bergman spaces of Bn. It turns out, as we will show below, that
for such ϕ, Cϕ is always bounded on Hγ for any γ > 0. We will need the
following characterization of Hγ , which follows from [18, Theorem 13].

For any multi-index m = (m1, . . . ,mn) of non-negative integers and any
analytic function h on Bn, we write ∂mh = ∂|m|h

∂z
m1
1 ···∂zmnn

, where |m| = m1 +

· · · + mn. For any real number α, put dµα(z) = (1 − |z|2)−n−1+αdV (z),
where dV is the usual Lebesgue measure on the unit ball Bn.

Theorem 2.1. Let γ > 0. The following conditions are equivalent for an
analytic function h on Bn.
(a) h belongs to Hγ.
(b) For some non-negative integer k with 2k+γ > n, all the functions ∂mh,

where |m| = k, belong to L2(Bn, dµγ+2k).
(c) For every non-negative integer k with 2k+γ > n, all the functions ∂mh,

where |m| = k, belong to L2(Bn, dµγ+2k).

Remark 2.2. Theorem 2.1 in particular shows that for any given positive
number s, the function h belongs to Hγ if and only if for any multi-index l
with |l| = s, ∂lh belongs to Hγ+2s. As a consequence, Hγ1 ⊂ Hγ2 whenever
γ1 ≤ γ2.

Recall that the multiplier space Mult(Hγ) of Hγ is the space of all ana-
lytic functions f on Bn for which fh belongs to Hγ whenever h belongs to
Hγ . Since norm convergence in Hγ implies point-wise convergence on Bn,
it follows from the closed graph theorem that f is a multiplier if and only
if the multiplication operator Mf is bounded on Hγ . It is well known that
Mult(Hγ) is contained in H∞, the space of bounded analytic functions on
Bn. For γ ≥ n, it holds that Mult(Hγ) = H∞. This follows from the fact
that for such γ the norm on Hγ comes from an integral. On the other hand,
when n ≥ 2 and γ = 1 (hence Hγ is the Drury-Arveson space), Mult(Hγ) is
strictly smaller than H∞ (see [1, Remark 8.9] or [2, Theorem 3.3]). However
we will show that if f and all of its partial derivatives are bounded on Bn,
then f is a multiplier of Hγ for all γ > 0.

Lemma 2.3. Let f be a bounded analytic function such that for each multi-
index m, the function ∂mf is bounded on Bn. Then f belongs to Mult(Hγ),
and hence the operator Mf is bounded on Hγ for any γ > 0.

Proof. Let γ > 0 be given. Choose a positive integer k such that γ+2k > n.
Let h belong to Hγ . For any multi-index m with |m| = k, the derivative
∂m(fh) is a linear combination of products of the form (∂tf)(∂sh) for multi-
indexes s, t with s+t = m. For such s and t, ∂sh belongs to Hγ+2|s| ⊂ Hγ+2k
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(by Remark 2.2) and ∂tf , which is bounded by the hypothesis, is a multiplier
of Hγ+2k (since Mult(Hγ+2k) = H∞). Thus, (∂tf)(∂sh) belongs to Hγ+2k.
Therefore, ∂m(fh) belongs to Hγ+2k. By Theorem 2.1, fh is in Hγ . Since
h was arbitrary in Hγ , we conclude that f is a multiplier of Hγ . �

An analytic map from Bn into itself is a linear fractional map [11] if there
is a linear operator A on Cn, two vectors B,C in Bn and a complex number
d such that

ϕ(z) =
Az +B

〈z, C〉+ d
for z ∈ Bn.

Using Lemma 2.3 together with the aforementioned Cowen-MacCluer’s re-
sult, we show that for ϕ a linear fractional self-map of the unit ball, the
composition operator Cϕ is bounded on Hγ for all γ > 0. In [14], Jury
proves that Cϕ is bounded on Hγ for all γ ≥ 1 by an approach using kernel
functions. He also obtains an estimate for the norm of Cϕ but we do not
need it here.

Proposition 2.4. Let γ > 0 be given. Suppose ϕ is a linear fractional map
of Bn into itself, then Cϕ is bounded on Hγ.

Proof. Since Cϕ is a closed linear operator, to show that Cϕ is bounded on
Hγ , it suffices to show that h ◦ ϕ belongs to Hγ whenever h belongs to Hγ .
For γ > n, this follows from [11, Theorem 15].

Now consider γ > max{0, n− 2}. Write ϕ = (ϕ1, . . . , ϕn). For each j, we
have ∂zj (h ◦ϕ) = (∂z1h ◦ϕ)(∂zjϕ1) + · · ·+ (∂znh ◦ϕ)(∂zjϕn). For 1 ≤ k ≤ n,
since ∂zkh belongs to Hγ+2 (by Remark 2.2) and γ + 2 > n, we see that
∂zkh ◦ϕ also belongs to Hγ+2. On the other hand, since ∂zjϕk is analytic in
a neighborhood of the closed unit ball, it satisfies the hypothesis of Lemma
2.3. Therefore by Lemma 2.3, the product (∂zkh ◦ ϕ)(∂zjϕk) belongs to
Hγ+2. Thus, ∂zj (h ◦ϕ) is in Hγ+2 for all 1 ≤ j ≤ n. Now Remark 2.2 shows
that h ◦ ϕ belongs to Hγ .

Repeating the above argument, we obtain the conclusion of the proposi-
tion for γ > max{0, n − 4}, then γ > max{0, n − 6}, and so on. Therefore
the conclusion holds for all γ > 0. �

Remark 2.5. Proposition 2.4 together with Lemma 2.3 shows that if ϕ is a
linear fractional self-map of Bn and f is analytic on an open neighborhood
of Bn, then the weighted composition operator Wf,ϕ is bounded on Hγ for
all γ > 0.

We close this section with some elementary properties of bounded weighted
composition operators. Suppose Wf,ϕ is bounded on Hγ for some γ > 0.
Then the action of the adjoint W ∗f,ϕ on the kernel functions can be computed
easily. Indeed, for any z, w in Bn, by the properties of the reproducing kernel
functions,

(W ∗f,ϕK
γ
z )(w) = 〈W ∗f,ϕKγ

z ,K
γ
w〉 = 〈Kγ

z , f · (Kγ
w ◦ ϕ)〉

= f(z)Kγ
w(ϕ(z)) = f(z)Kγ

ϕ(z)(w).
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This gives the well known formula

W ∗f,ϕK
γ
z = f(z)Kγ

ϕ(z). (2.1)

It is straight forward that the set of bounded weighted composition oper-
ators on any Hγ is closed under operator multiplication. In fact for analytic
functions f, g and analytic self-maps ϕ,ψ of Bn for which both Wf,ϕ and
Wg,ψ are bounded on some Hγ , we have

Wf,ϕWg,ψ = Wf ·g◦ϕ,ψ◦ϕ. (2.2)

Another elementary fact we would like to mention is that each non-zero
weighted composition operator Wf,ϕ is determined uniquely by the pair f
and ϕ. In fact, suppose Wf,ϕ = Wg,ψ on Hγ and f is not identically zero.
Then since f = Wf,ϕK

γ
0 and g = Wg,ψK

γ
0 , we obtain f = g. Now for any

h ∈ Hγ , since f · (h ◦ ϕ − h ◦ ψ) = 0 and f is not identically zero, we have
h ◦ ϕ = h ◦ ψ. Write ϕ = (ϕ1, . . . , ϕn) and ψ = (ψ1, . . . , ψn). Choosing
h(z) = zj , we conclude that ϕj = ψj for j = 1, . . . , n. Thus, ϕ = ψ.

3. Unitary weighted composition operators

Unitary weighted composition operators have been used in the study of
Toeplitz operators on Hardy or Bergman spaces, see for example [20, p. 189].
In this section we will characterize all unitary weighted composition opera-
tors. In fact, we will show that Wf,ϕ is unitary on Hγ if and only if ϕ is an
automorphism and f is a constant multiple of a reproducing kernel function
associated with ϕ.

For a ∈ Bn, we define the normalized reproducing kernel kγa by

kγa(w) = Kγ
a (w)/‖Kγ

a‖ =
(1− |a|2)γ/2

(1− 〈w, a〉)γ
for w ∈ Bn.

Let ϕa be the Moebius automorphism of the ball that interchanges 0 and a.
The formulas in [16, Section 2.2.1] show that ϕa is a linear fractional map
of Bn. Put Ua = Wkγa ,ϕa

, the weighted composition operator on Hγ given
by ϕa and kγa . By Remark 2.5, Ua is a bounded operator. It turns out that
Ua is in fact a self-adjoint unitary operator, that is, U∗a = Ua and U2

a = 1.
This fact is well known and it is a consequence of a change of variables
when Hγ is a weighted Bergman space (γ > n) or the Hardy space (γ = n).
See [19, Proposition 1.13] for weighted Bergman spaces and [19, Proposition
4.2] for the Hardy space. On these spaces, one has the relation [20, p. 189]
UaTηUa = Tη◦ϕa , where Tη denotes the Toeplitz operator with symbol η.

For other values of γ, for example, the Drury-Arveson space, the inner
product on Hγ does not come from a measure on Bn so the approach using
integral formulas does not seem to work. Our approach here makes use of
the kernel functions and it works for all γ > 0. We in fact show that for each
given γ > 0, for each automorphism ψ of Bn, there corresponds a weight
function f for which Wf,ψ is a unitary operator on Hγ . The function f
depends on ψ and the value of γ.
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Proposition 3.1. Let ψ be an automorphism of Bn. Put a = ψ−1(0) and
b = ψ(0). Then the weighted composition operator Wkγa ,ψ

is a unitary oper-
ator on Hγ and W ∗

kγa ,ψ
= W−1

kγa ,ψ
= Wkγb ,ψ

−1.

Proof. We will make use of the the identity

1− 〈ψ(z), ψ(w)〉 =
(1− 〈a, a〉)(1− 〈z, w〉)
(1− 〈z, a〉)(1− 〈a,w〉)

, (3.1)

which holds for all z, w ∈ Bn (see [16, Theorem 2.2.5]). With z = w = 0,
(3.1) gives |b| = |ψ(0)| = |a|. For any z ∈ Bn, we have

kγb (ψ(z)) =
(1− |b|2)γ/2

(1− 〈ψ(z), b〉)γ
=

(1− |b|2)γ/2

(1− 〈ψ(z), ψ(0)〉)γ

=
(1− |b|2)γ/2 · (1− 〈z, a〉)γ

(1− |a|2)γ
(by (3.1) with w = 0)

=
( 1− |b|2

1− |a|2
)γ/2 1

kγa(z)
=

1
kγa(z)

(since |b| = |a|).

We obtain
kγa(z) · kγb (ψ(z)) = 1 for all z ∈ Bn. (3.2)

By Remark 2.5, the operators Wkγa ,ψ
and Wkγb ,ψ

−1 are bounded on Hγ .
For h ∈ Hγ , (3.2) gives Wkγa ,ψ

Wkγb ,ψ
−1h = kγa · (kγb ◦ ψ) · h = h. Therefore

Wkγa ,ψ
Wkγb ,ψ

−1 = I on Hγ . Similarly, Wkγb ,ψ
−1Wkγa ,ψ

= 1 on Hγ . Hence
Wkγa ,ψ

is an invertible operator with inverse Wkγb ,ψ
−1 .

Now let z and w be in Bn. Using (3.1), we compute(
Wkγa ,ψ

Kγ
ψ(z)

)
(w) = kγa(w)Kγ

ψ(z)(ψ(w))

=
(1− |a|2)γ/2

(1− 〈w, a〉)γ
1

(1− 〈ψ(w), ψ(z)〉)γ

=
(1− |a|2)γ/2

(1− 〈w, a〉)γ
(1− 〈w, a〉)γ (1− 〈a, z〉)γ

(1− |a|2)γ (1− 〈w, z〉)γ
=
Kγ
z (w)

kγa(z)
.

Thus Wkγa ,ψ
Kγ
ψ(z) = Kγ

z /k
γ
a(z). Using this and formula (2.1), we obtain

W ∗kγa ,ψWkγa ,ψ
(Kγ

ψ(z)) =
1

kγa(z)
W ∗kγa ,ψ(Kγ

z ) = Kγ
ψ(z).

Since z was arbitrary and ψ is surjective, this implies, by linearity, that
W ∗
kγa ,ψ

Wkγa ,ψ
h = h for all h in the span M of {Kγ

z : z ∈ Bn}. Since Wkγa ,ψ
is

bounded on Hγ andM is dense in Hγ , we conclude that W ∗
kγa ,ψ

Wkγa ,ψ
= I on

Hγ . Therefore Wkγa ,ψ
is an invertible isometry on Hγ , and hence a unitary

operator. �

Corollary 3.2. For any a in Bn, the operator Ua = Wkγa ,ϕa
is a self-adjoint

unitary operator on Hγ.
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Proof. Since ϕa is an automorphism of Bn with ϕ−1
a = ϕa and a = ϕ−1

a (0),
the corollary follows immediately from Proposition 3.1. �

For any linear operator V on Cn with ‖V ‖ ≤ 1, put ψV (z) = V z for
z ∈ Bn. Then ψV is an analytic self-map of the unit ball. We denote by
CV is composition operator CψV on Hγ . Lemma 8.1 in [10] shows that CV
is bounded on any Hγ and C∗V = CV ∗ (the boundedness of CV also follows
from Proposition 2.4). When V is unitary, we obtain

Corollary 3.3. For any unitary operator V of Cn, the composition operator
CV is a unitary operator on Hγ with adjoint C∗V = CV ∗ = CV −1.

Proof. The corollary can be proved by using Proposition 3.1 together with
the fact that ψV is an automorphism of Bn with ψ−1

V = ψV −1 and ψ(0) = 0.
It also follows (more easily) from the identities

CV ∗CV = CV V ∗ = I = CV ∗V = CV CV ∗ . �

Now assume that ϕ,ψ are analytic self-maps of the unit ball and f, g are
analytic functions such that the weighted composition operators Wf,ϕ and
Wg,ψ are bounded on Hγ . We seek necessary and sufficient conditions for
which Wf,ϕW

∗
g,ψ = I on Hγ .

Consider first the case ϕ(0) = 0. For any z in Bn, by (2.1), we have
W ∗g,ψK

γ
z = g(z)Kγ

ψ(z), so Wf,ϕW
∗
g,ψK

γ
z = g(z)fKγ

ψ(z) ◦ ϕ. Therefore,

g(z)f(w)Kγ
ψ(z)(ϕ(w)) = Kγ

z (w) for z, w ∈ Bn. (3.3)

Letting w = 0 and using the fact that Kγ
ψ(z)(ϕ(0)) = Kγ

ψ(z)(0) = 1 and

Kγ
z (0) = 1 for all z ∈ Bn, we obtain g(z)f(0) = 1, which gives g(z) = 1/f(0).

Thus, g is a constant function.
Letting z = 0 in (3.3) gives (f(0))−1f(w)Kγ

ψ(0)(ϕ(w)) = Kγ
0 (w) = 1,

which implies f(w) = f(0)/Kγ
ψ(0)(ϕ(w)) for w ∈ Bn. Substituting this into

(3.3), we obtain Kγ
ψ(z)(ϕ(w))/Kγ

ψ(0)(ϕ(w)) = Kγ
z (w). Thus

(1− 〈ϕ(w), ψ(z)〉)−γ

(1− 〈ϕ(w), ψ(0)〉)−γ
= (1− 〈w, z〉)−γ .

This gives (here we need to use the continuity of ϕ and ψ on Bn)
1− 〈ϕ(w), ψ(z)〉
1− 〈ϕ(w), ψ(0)〉

= 1− 〈w, z〉 for all z, w ∈ Bn,

which implies 〈 ϕ(w)
1− 〈ϕ(w), ψ(0)〉

, ψ(z)− ψ(0)
〉

= 〈w, z〉. (3.4)

By Lemma 3.10 below, there is an invertible linear operator A on Cn such
that ψ(z) = ψ(0)+Az and ϕ(w) = (1−〈ϕ(w), ψ(0)〉)(A∗)−1w for z, w ∈ Bn.
The latter implies

〈ϕ(w), ψ(0)〉 = (1− 〈ϕ(w), ψ(0)〉) · 〈(A∗)−1w,ψ(0)〉,
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which gives

1− 〈ϕ(w), ψ(0)〉 =
1

1 + 〈(A∗)−1w,ψ(0)〉
=

1
1 + 〈w,A−1ψ(0)〉

.

Therefore ϕ is a linear fractional map given by the formula

ϕ(w) =
(A∗)−1w

1 + 〈w,A−1ψ(0)〉
for all w ∈ Bn.

It turns out that in order for ϕ and ψ to be self-maps of the unit ball, ψ(0)
must be zero. To show this, we will make use of Cowen-MacCluer’s results
[11] on linear fractional maps. By the definition on [11, p. 369], the adjoint
map of ϕ has the formula σ(w) = A−1w − A−1ψ(0). Since ϕ is a self-map
of the unit ball, [11, Proposition 11] implies that σ is also a self-map of the
unit ball. On the other hand, it is clear that ψ ◦ σ = σ ◦ ψ = idBn , the
identity map of Bn. This shows that both ψ and σ are automorphisms of
Bn.

To finish the proof, we use the description of the automorphism group of
the unit ball [16, Theorem 2.2.5], which in particular says that any auto-
morphism that does not fix the origin must be a linear fractional map with
a non-constant denominator. Since the denominator of ψ is a constant, ψ
must fix the origin: ψ(0) = 0. Therefore we obtain ϕ(w) = (A∗)−1w and
ψ(w) = Aw for w ∈ Bn. But ϕ and ψ map the unit ball into itself, hence A
is a unitary operator. Since (A∗)−1 = A, we see that ϕ(w) = Aw = ψ(w)
for w ∈ Bn. Furthermore, since ψ(0) = 0, we have

f(w) = f(0)/Kγ
ψ(0)(ϕ(w)) = f(0)/Kγ

0 (ϕ(w)) = f(0),

which is a constant function. Since g(w) = 1/f(0), we have f(w)g(w) = 1
for all w ∈ Bn.

Thus we have shown the ‘only if’ part of the following proposition. The
‘if’ part is much easier and it follows from Corollary 3.3.

Proposition 3.4. Let f, g be analytic functions on Bn and let ϕ,ψ be ana-
lytic self-maps of Bn with ϕ(0) = 0. Then Wf,ϕW

∗
g,ψ = I on Hγ if and only

if f, g are constant functions with fg ≡ 1 and there is a unitary operator A
on Cn so that ϕ(w) = ψ(w) = Aw for w ∈ Bn. In this case, Wf,ϕ and Wg,ψ

are constant multiples of a unitary composition operator.

The general case (without the assumption ϕ(0) = 0) now follows from
Proposition 3.4 after multiplying both Wf,ϕ and Wg,ψ by a unitary operator.

Theorem 3.5. Let f, g be analytic functions on Bn and let ϕ,ψ be analytic
self-maps of Bn. Then Wf,ϕW

∗
g,ψ = I on Hγ if and only if ϕ = ψ, an

automorphism of Bn; and there is a constant λ 6= 0 such that f = λkγa and
g = (1/λ)kγa , where a = ϕ−1(0). Furthermore, both Wf,ϕ and Wg,ψ are
constant multiples of the unitary operator Wkγa ,ϕ

.
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Proof. The ‘if’ part follows from Proposition 3.1 so we only need to prove
the ‘only if’ part. Put b = ϕ(0). Define

f̃ = f · kγb ◦ ϕ, ϕ̃ = ϕb ◦ ϕ and g̃ = g · kγb ◦ ψ, ψ̃ = ϕb ◦ ψ.
Then by (2.2), Wf̃ ,ϕ̃ = Wf,ϕUb and Wg̃,ψ̃ = Wg,ψUb. Since Ub is a unitary, we
have Wf̃ ,ϕ̃W

∗
g̃,ψ̃

= Wf,ϕW
∗
g,ψ. Therefore the second product is the identity

operator if and only if the first product is the identity operator. Since
ϕ̃(0) = ϕb(ϕ(0)) = ϕb(b) = 0, by Proposition 3.4, Wf̃ ,ϕ̃W

∗
g̃,ψ̃

= I on Hγ

if and only if f̃ , g̃ are constant functions with f̃ · g̃ ≡ 1 and there exists a
unitary operator A on Cn such that ϕ̃(w) = ψ̃(w) = Aw for w ∈ Bn. The
identity ϕ−1

b = ϕb now implies ϕ(z) = ψ(z) = ϕb(Az) for z ∈ Bn. Thus
ϕ = ψ and they equal an automorphism of Bn. Suppose f̃ ≡ λ 6= 0 and
g̃ ≡ 1/λ. By (3.2), we obtain

f =
f̃

kγb ◦ ϕ
=

λ

kγϕ(0) ◦ ϕ
= λkγ

ϕ−1(0)
= λkγa .

Similarly, g = (1/λ)kγa . Thus Wf,ϕ = λWkγa ,ϕ
and Wg,ψ = (1/λ)Wkγa ,ϕ

. �

Corollary 3.6. Let f be an analytic function on Bn and ϕ be an analytic
self-map of Bn such that the operator Wf,ϕ is bounded on Hγ for some γ > 0.
Then TFAE
(a) Wf,ϕ is a unitary on Hγ.
(b) Wf,ϕ is a co-isometry on Hγ.
(c) ϕ is an automorphism of Bn and f = λkγ

ϕ−1(0)
for some complex number

λ with |λ| = 1.

Proof. The implication (a) ⇒ (b) is trivial. The implications (b) ⇒ (c) ⇒
(a) follow from Theorem 3.5 in the case g = f and ψ = ϕ. �

Remark 3.7. The equivalence of (a) and (b) in the above corollary is not
surprising in one dimension. This follows from the fact that in one dimen-
sion most weighted composition operators are injective. In fact if f is not
identically zero and ϕ is not a constant function, then Wf,ϕ is injective on
any Hγ on the unit disk. In dimensions greater than one, it may happen that
the kernel of Wf,ϕ is non-trivial even in the case f does not vanish and ϕ is
a non-constant map of Bn. Thus, it might be surprising that all co-isometric
weighted composition operators are in fact unitary on Hγ . Corollary 3.6 also
shows that any unitary weighted composition operator on Hγ is of the form
a constant (of modulus one) multiplying a unitary operator in Proposition
3.1.

Remark 3.8. The equivalence between (a) and (c) for weighted composition
operators on the Hardy space of the unit disk is shown by Bourdon and
Narayan in [3] by a different route. They show that if Wf,ϕ is unitary, then
ϕ must be a univalent inner function, and hence, an automorphism of the
unit disk.
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In [3], Bourdon and Narayan go on to characterize the spectra of these
unitary weighted composition operators. Their spectral characterizations
are based on whether the automorphism ϕ is elliptic, hyperbolic or parabolic.
While the case of elliptic automorphisms (which fix a point in Bn) can be
carried on to higher dimensions, we have not been able to resolve the other
two cases. The following spectral description is a consequence of a result in
the next section about normal weighted composition operators.

Proposition 3.9. Let f be an analytic function and ϕ an automorphism
of Bn that fixes a point p ∈ Bn. Suppose Wf,ϕ is unitary on Hγ. Then
|f(p)| = 1; all eigenvalues of ϕ′(p) belong to the unit circle; and the spectrum
of Wf,ϕ is the closure of the set

{f(p)} ∪ {f(p) · λ1 · · ·λs : λj ∈ σ(ϕ′(p)) for 1 ≤ j ≤ s and s = 1, 2, . . .}.

Here σ(ϕ′(p)) is the set of eigenvalues of the matrix ϕ′(p).

Proof. Since Wf,ϕ is normal, the description of its spectrum follows from
Proposition 4.4 in Section 4 below. Since the spectrum of Wf,ϕ must be a
subset of the unit circle, we conclude that |f(p)| = 1 and |λ| = 1 for any λ
in σ(ϕ′(p)). �

We end this section with a lemma that was used in the proof of Proposition
3.4. We only need the finite dimensional version but the infinite dimensional
case is also interesting in its own right. This result might have appeared
in the literature but since we are not aware of an appropriate reference, we
provide here a proof.

Lemma 3.10. Let M be a Hilbert space with an inner product denoted by
〈, 〉. Suppose F and G are two maps from the unit ball B of M into M such
that 〈F (w), G(z)〉 = 〈w, z〉 for all w, z in B. Then there is an orthogonal
decomposition M = M1 ⊕M2 ⊕M3; there are bounded linear operators
A,B from M into M1 with B∗A = 1; and there are (possibly non-linear)
maps F1 :M→M2 and G1 :M→M3 such that F (w) = Aw+F1(w) and
G(z) = Bz +G1(z) for all w, z in B.

If M has finite dimension, then both M2 and M3 are {0} and hence
F (w) = Aw and G(z) = Bz = (A∗)−1z for w, z ∈ B. If, in addition, F and
G map B into itself, then A is a unitary operator.

If F = G, then F1 = G1 = 0; A = B; and hence F (z) = G(z) = Az for
z ∈ B. Furthermore, A is an isometry on M.

Proof. Let N be the closure of the linear span of {G(z) : z ∈ B}. Then we
have PNG = G (here PN is the orthogonal projection fromM onto N ) and
for all w, z ∈ B,

〈PNF (w), G(z)〉 = 〈F (w), G(z)〉 = 〈w, z〉.
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For any z, w1, w2 in B and complex numbers c1, c2 such that c1w1 + c2w2

also belongs to B, we have〈
PNF (c1w1 + c2w2)− c1PNF (w1)− c2PNF (w2), G(z)

〉
= 〈c1w1 + c2w2, z〉 − c1〈w1, z〉 − c2〈w2, z〉 = 0.

Since the range of PNF is contained in N and the linear span of the set
{G(z) : z ∈ B} is dense in N , we conclude that PNF (c1w1 + c2w2) =
c1PNF (w1) + c2PNF (w2). From this, it follows that PNF extends to a
linear operator on M. We call this extension A and denote the closure of
its range by M1. So A can be regarded as an operator from M into M1.
We have 〈Aw,G(z)〉 = 〈w, z〉 for all w, z ∈ B. We claim that A is a closed
operator and hence by the Closed Graph Theorem, it is bounded. Suppose
{wm} is a sequence inM such that wm → 0 and Awm → y as m→∞. For
z ∈ B,

0 = lim
m→∞

〈wm, z〉 = lim
m→∞

〈Awm, G(z)〉 = 〈y,G(z)〉.

Since y belongs to M1 ⊂ N and the linear span of {G(z) : z ∈ B} is dense
in N , we conclude that y = 0. So A is a closed operator.

Now for w, z ∈ B, 〈Aw,PM1G(z)〉 = 〈Aw,G(z)〉 = 〈w, z〉. It then follows,
by the same argument as before, that PM1G extends to a bounded linear
operator on M. Call this operator B. Then the range of B is contained in
M1 (hence we may regard B as an operator fromM intoM1) and we have
〈Aw,Bz〉 = 〈w, z〉 for w, z ∈ B. As before, B can be shown to be a closed
operator, hence it is bounded and we have B∗A = 1.

PutM2 =M	N andM3 = N	M1. Put F1 = PM2F and G1 = PM3G.
We then have, on B,

F = PNF + PM2F = A+ F1,

G = PNG = PNPM1G+ PN (I − PM1)G = PM1G+ PM3G = B +G1.

IfM is a finite dimensional space, then it follows from B∗A = 1 that both
A and B are invertible operators from M onto M1. Therefore, M1 = M,
which forces M2 = M3 = {0}. So F (w) = Aw and G(z) = Bz = (A∗)−1z
for w, z ∈ B. If both F and G maps B into itself, then ‖A‖ ≤ 1 and
‖(A∗)−1‖ ≤ 1. Consequently, both A and A−1 are contractive operators on
M. This forces A to be unitary.

If F = G then we have F1 = G1 = 0 and A = B. But B∗A = 1, so
A∗A = 1 and hence A is an isometry on M. �

4. Normal weighted composition operators

Recall that for V a linear operator on Cn with ‖V ‖ ≤ 1, we denote by
CV the composition operator induced by the analytic self-map ψV (z) =
V z of Bn. If V is normal, then since CV C∗V = CV ∗V = CV V ∗ = C∗V CV ,
the operator CV is normal on Hγ . It turns out that these are all normal
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composition operators on Hγ for each γ > 0. The following result is part of
[10, Theorem 8.2].

Proposition 4.1. Let γ > 0 and let ϕ be an analytic mapping of Bn into
itself. Then Cϕ is normal on Hγ if and only if ϕ(z) = Az for some normal
linear operator A on Cn with ‖A‖ ≤ 1.

The spectrum of a normal composition operator can be determined easily.
Let A be a normal linear operator on Cn with ‖A‖ ≤ 1, we will identify the
eigenvalues and eigenvectors of CA on Hγ . We will show that CA is diago-
nalizable and hence its spectrum is the closure of the set of its eigenvalues.

Since A is normal, there is an orthonormal basis {u1, . . . , un} of Cn which
consists of eigenvectors of A. Write Auj = λjuj , where λj is the eigenvalue
corresponding to uj for 1 ≤ j ≤ n (note that some of these eigenvalues may
be the same). Then the spectrum of A is given by σ(A) = {λ1, . . . , λn}.
Let {e1, . . . , en} be the standard orthonormal basis for Cn and let V be
the unitary operator on Cn such that V uj = ej for 1 ≤ j ≤ n. For any
z = (z1, . . . , zn) in Cn, we have

V AV ∗(z) = (λ1z1, . . . , λnzn). (4.1)

Recall from the Introduction that for any γ > 0, the set of analytic
monomials {zm = zm1

1 · · · zmnn : m = (m1, . . . ,mn) ∈ Nn
0} is a complete

orthogonal set in Hγ . By (4.1), we have CV AV ∗(zm) = λmzm for all m ∈ Nn
0

(here we write λm = λm1
1 · · ·λmnn and use the convention that 00 = 1). Since

CV AV ∗ = CV ∗CACV and CV is unitary with C∗V = CV ∗ (by Corollary 3.3),
we conclude that the set {CV zm : m ∈ Nn

0} is a complete orthogonal set
in Hγ and for each m ∈ Nn

0 , the function CV z
m is an eigenfunction for CA

with eigenvalue λm. Thus the operator CA is diagonalizable in Hγ and the
spectrum σ(CA) is the closure of the set {λm : m ∈ Nn

0}.
The eigenfunctions CV (zm) of CA can be described in terms of the eigen-

vectors of A as follows.

CV (zm) = CV (zm1
1 · · · zmnn ) = CV (〈z, e1〉m1 · · · 〈z, en〉mn)

= 〈V z, e1〉m1 · · · 〈V z, en〉mn = 〈z, V ∗e1〉m1 · · · 〈z, V ∗en〉mn

= 〈z, u1〉m1 · · · 〈z, un〉mn .
We have thus obtained

Proposition 4.2. Let A be a normal operator on Cn with ‖A‖ ≤ 1. Let
{u1, . . . , un} be an orthonormal basis for Cn consisting of eigenvectors of A.
Write Auj = λjuj for 1 ≤ j ≤ n. Then the following statements hold.

(a) The set {fm(z) = 〈z, u1〉m1 · · · 〈z, un〉mn : m = (m1, . . . ,mn) ∈ Nn
0}

is a complete orthogonal set of Hγ.
(b) Each fm is an eigenfunction of CA with eigenvalue λm = λm1

1 · · ·λmnn .
(c) The spectrum of CA is the closure of the set {λm : m ∈ Nn

0}, where
λ = (λ1, . . . , λn). This set can also be written as {1} ∪ {α1 · · ·αs :
αj ∈ σ(A) for 1 ≤ j ≤ s and s = 1, 2, . . .}.
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In [3], Bourdon and Narayan study normal weighted composition oper-
ators on the Hardy space of the unit disk. They provide two necessary
conditions for Wf,ϕ to be normal [3, Lemma 2 and Proposition 3]: (1) either
f ≡ 0 or f never vanishes, and (2) if ϕ is not a constant function and f is not
the zero function, then ϕ is univalent. While condition (1) is still valid in all
dimensions with the same proof, condition (2) no longer holds in dimension
greater than one, as Proposition 4.1 shows. On the other hand, we will see
that the characterization of normal Wf,ϕ on Hγ remains the same if the map
ϕ fixes a point in the unit ball. Our approach here was inspired by that in
[3] but the argument has been simplified. Furthermore, our proof works for
all Hγ in any dimension.

Theorem 4.3. Suppose ϕ is an analytic self-map of Bn that fixes a point
p in Bn. If Wf,ϕ is a non-zero normal operator, then there exist a constant
α 6= 0 and a normal linear operator A on Cn with ‖A‖ ≤ 1 such that

f = α
kγp

kγp ◦ ϕ
, and ϕ(z) = ϕp(Aϕp(z)) for z ∈ Bn. (4.2)

Conversely, if f and ϕ satisfy (4.2), then α = f(p) and Wf,ϕ is unitarily
equivalent to the normal operator f(p)CA (in fact, Wf,ϕ = Up

(
f(p)CA

)
Up)

and hence it is normal.

Proof. We assume first ϕ(0) = 0 and Wf,ϕ is a non-zero normal operator.
By (2.1), we have

W ∗f,ϕK
γ
0 = f(0)Kγ

ϕ(0) = f(0)Kγ
0 .

This shows that Kγ
0 is an eigenvector of W ∗f,ϕ with eigenvalue f(0). Since

Wf,ϕ is normal, we obtain Wf,ϕK
γ
0 = f(0)Kγ

0 , which implies f ·Kγ
0 ◦ ϕ =

f(0)Kγ
0 and hence f = f(0) since Kγ

0 ≡ 1. So f is a constant function (which
is non-zero because Wf,ϕ is a non-zero operator). This in turns implies that
Cϕ is normal on Hγ . By Proposition 4.1, there is a normal linear operator
on Bn with ‖A‖ ≤ 1 such that ϕ(z) = Az for z ∈ Bn.

For general p, define f̃ = (kγp ◦ ϕ ◦ ϕp)(f ◦ ϕp)kγp and ϕ̃ = ϕp ◦ ϕ ◦ ϕp.
By (2.2), UpWf,ϕUp = W ef,eϕ. Since Wf,ϕ and W ef,eϕ are unitarily equivalent
(recall that Up is a self-adjoint unitary operator), one is normal if and only
if the other is normal. Since ϕ̃(0) = 0, the above argument shows that
W ef,eϕ is normal if and only if f̃ is a constant function, say, f̃ ≡ α and
ϕ̃(z) = Az for some normal operator A on Cn with ‖A‖ ≤ 1. Thus we
obtain (kγp ◦ ϕ ◦ ϕp)(f ◦ ϕp)kγp ≡ α and ϕp ◦ ϕ ◦ ϕp(z) = Az. Using the fact
that ϕp ◦ ϕp is the identity map on Bn, we get

f =
α

(kγp ◦ ϕ)(kγp ◦ ϕp)
, and ϕ(z) = ϕp(Aϕp(z)) for z ∈ Bn. (4.3)
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On the other hand, since ϕp(0) = p = ϕ−1
p (0), (3.2) gives kγp · (kγp ◦ ϕp) = 1.

Therefore f can be written as f = α
kγp
kγp◦ϕ

. Since kγp (ϕ(p)) = kγp (p), we see
that f(p) = α.

Conversely, if f and ϕ satisfy (4.2), then they satisfy (4.3) (with α = f(p))
and hence Wf,ϕ is unitarily equivalent to the normal operator f(p)CA. �

We now use Theorem 4.3 and Proposition 4.2 to discuss the spectra of
normal weighted composition operators. Suppose that f and ϕ satisfy (4.2).
Let {u1, . . . , un} be an orthonormal basis for Cn consisting of eigenvectors
of A. Let λj be the eigenvalue of A corresponding to the eigenvector uj and
put fj(z) = 〈z, uj〉 for 1 ≤ j ≤ n. For each multi-index m = (m1, . . . ,mn)
in Nn

0 , we write fm = fm1
1 · · · fmnn . From Proposition 4.2 we know that

{fm : m ∈ Nn
0} is a complete orthogonal set of Hγ and CA(fm) = λmfm for

each m, where λ = (λ1, . . . , λn).
For 1 ≤ j ≤ n, put

gj(z) = (Upfj)(z) = kγp (z)fj(ϕp(z)) = kγp (z)〈ϕp(z), uj〉.
Put gm = gm1

1 · · · gmnn = Up(fm) for m = (m1, . . . ,mn) ∈ Nn
0 . Since Up is

unitary on Hγ , the set {gm : m ∈ Nn
0} is a complete orthogonal set of Hγ .

Since Wf,ϕ = Up(f(p)CA)Up by Theorem 4.3 and Up = U−1
p , we conclude

that Wf,ϕgm = f(p)λmgm for m ∈ Nn
0 . Therefore the spectrum of Wf,ϕ is

the closure of the set {f(p)λm : m ∈ Nn
0}, which is the same as

{f(p)} ∪ {f(p) · α1 · · ·αs : αj ∈ σ(A) for 1 ≤ j ≤ s and s = 1, 2, . . .}.
On the other hand, by the chain rule, we have

ϕ′(p) = ϕ′p(Aϕp(0))Aϕ′p(p) = ϕ′p(0)Aϕ′p(p).

Since ϕp ◦ ϕp = IBn , ϕp(0) = p and ϕp(p) = 0, the chain rule again gives
ϕ′p(p)ϕ

′
p(0) = ϕ′p(0)ϕ′p(p) = In, the identity operator on Cn. Therefore

ϕ′(p) and A are similar and hence they have the same set of eigenvalues,
counting multiplicities. In particular, σ(A) = σ(ϕ′(p)). We thus obtain the
description of the spectrum of Wf,ϕ intrinsically in terms of f and ϕ.

Proposition 4.4. Let f be a non-zero analytic function and ϕ an analytic
self-map of Bn that fixes a point p on Bn. Suppose Wf,ϕ is a normal operator
on Hγ. Then the spectrum of Wf,ϕ is the closure of the set

{f(p)} ∪ {f(p) · α1 · · ·αs : αj ∈ σ(ϕ′(p)) for 1 ≤ j ≤ s and s = 1, 2, . . .}.

We have characterized normal weighted composition operators induced by
analytic self-maps of Bn that fix a point in Bn. Our approach (conjugating
Wf,ϕ by a unitary) does not seem to work for ϕ that only has fixed point
on the sphere. In the rest of this section, we investigate normal weighted
composition operators of a certain type.

In [3, Section 5], Bourdon and Narayan note that in one dimension, the
function f in the conclusion of Theorem 4.3 is in fact a constant multiple
of Kγ

σ(0), where σ is the adjoint of the linear fractional map ϕ. They then
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go on to find necessary and sufficient conditions for the normality of Wf,ϕ,
where ϕ is a linear fractional map and f = Kγ

σ(0). It turns out that in higher
dimensions similar results also hold but they are less obvious because of the
complicated settings of several variables.

Recall that a linear fractional map ϕ has the form ϕ(z) = Az+B
〈z,C〉+d , where

A is a linear operator on Cn; B,C are vectors in Cn; and d is a complex
number. Given such a map ϕ, its adjoint is defined by

σ(z) = σϕ(z) =
A∗z − C
−〈z,B〉+ d

.

For more details on σ and its relation with ϕ, see [11].
We begin by a lemma that can be verified by a direct computation, using

the formulas of ϕ, σ and of the reproducing kernel functions.

Lemma 4.5. Let ϕ be a linear fractional self-map of Bn and let σ be its
adjoint. Then for any point a in Bn, we have

Kγ
ϕ(0) ·K

γ
a ◦ σ = K

γ
σ(0)(a)Kγ

ϕ(a) and Kγ
σ(0) ·K

γ
a ◦ ϕ = K

γ
ϕ(0)(a)Kγ

σ(a).

By Remark 2.5, both operators WKγ
ϕ(0)

,σ and WKγ
σ(0)

,ϕ are bounded on
Hγ . Now the first identity in Lemma 4.5 together with (2.1) shows that

WKγ
ϕ(0)

,σK
γ
a = W ∗Kγ

σ(0)
,ϕK

γ
a for all a ∈ Bn,

which implies that
WKγ

ϕ(0)
,σ = W ∗Kγ

σ(0)
,ϕ. (4.4)

We point out that this formula is in fact equivalent to the formula of C∗ϕ
given by Cowen and MacCluer in [11, Theorem 16], which can be written as

C∗ϕ = MKγ
ϕ(0)

CσM
∗
1/Kγ

σ(0)
.

Here for an analytic function g on the unit ball, Mg denotes the operator of
multiplication by g on Hγ .

For any point p in Bn, it follows from [16, Definition 2.2.1] that the invo-
lution ϕp of Bn has the form ϕp(z) = Tz+p

1−〈z,p〉 for some self-adjoint operator
T depending on p. This implies that the adjoint of ϕp is the same as ϕp.
Now let f, ϕ satisfy (4.2) in Theorem 4.3. Then the adjoint σ of ϕ has the
form σ(z) = ϕp(A∗ϕp(z)) for z ∈ Bn. (Note that the adjoint of ψ1 ◦ ψ2 is
the composition of the adjoint of ψ2 and the adjoint of ψ1, in this order, see
[11, Lemma 12].) In particular, σ(p) = ϕp(A∗ϕp(p)) = p. We thus obtain

f = α
kγp

kγp ◦ ϕ
= α

Kγ
p

Kγ
p ◦ ϕ

= α
Kγ
σ(p)

Kγ
p ◦ ϕ

=
α

K
γ
ϕ(0)(p)

Kγ
σ(0).

The last equality follows from the second identity in Lemma 4.5. Therefore
we see that f is a constant multiple of Kγ

σ(0).
In the rest of this section, we assume that ϕ is a linear fractional map and

f = Kγ
σ(0), where as above σ is the adjoint map of ϕ. We look for conditions
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for which the weighted composition operator Wf,ϕ is normal. We emphasize
here that in the case ϕ has a fixed point p in Bn, Theorem 4.3 provides a
complete answer: Wf,ϕ is normal if and only if ϕ(z) = ϕp(Aϕp(z)) for some
normal operator A on Bn. The result below does not require that ϕ have a
fixed point in Bn.

Proposition 4.6. Suppose ϕ is a linear fractional self-map of Bn and σ is
its adjoint. Let γ > 0 and put f = Kγ

σ(0). Then the operator Wf,ϕ is normal
on Hγ if and only if |ϕ(0)| = |σ(0)| and ϕ ◦ σ = σ ◦ ϕ.

Proof. Using (4.4) and (2.2), we compute

W ∗f,ϕWf,ϕ = WKγ
ϕ(0)

,σWKγ
σ(0)

,ϕ = WKγ
ϕ(0)
·Kγ
σ(0)
◦σ, ϕ◦σ,

Wf,ϕW
∗
f,ϕ = WKγ

σ(0)
,ϕWKγ

ϕ(0)
,σ = WKγ

σ(0)
·Kγ
ϕ(0)
◦ϕ, σ◦ϕ.

This shows that Wf,ϕ is normal if and only if ϕ ◦ σ = σ ◦ ϕ and

Kγ
ϕ(0) ·K

γ
σ(0) ◦ σ = Kγ

σ(0) ·K
γ
ϕ(0) ◦ ϕ. (4.5)

By the first identity in Lemma 4.5, the left hand side of (4.5) equals

K
γ
σ(0)(σ(0))Kγ

ϕ(σ(0)) = (1− |σ(0)|2)−γKγ
ϕ(σ(0)).

Similarly, by the second identity in Lemma 4.5, the right hand side of (4.5)
equals

K
γ
ϕ(0)(ϕ(0))Kγ

σ(ϕ(0)) = (1− |ϕ(0)|2)−γKγ
σ(ϕ(0)).

Thus (4.5) holds if and only if |σ(0)| = |ϕ(0)| and ϕ(σ(0)) = σ(ϕ(0)). The
latter is certainly true if ϕ ◦ σ = σ ◦ ϕ.

Therefore, the operator WKγ
σ(0)

,ϕ is normal if and only if ϕ ◦ σ = σ ◦ ϕ
and |ϕ(0)| = |σ(0)|, which completes the proof of the proposition. �

Remark 4.7. Proposition 4.6 in the case of the Hardy space on the unit
disk (n = 1) was obtained by Bourdon and Narayan in [3, Proposition 12]
but their conclusion was stated in a slightly different way.

Remark 4.8. In the case n = 1 and ϕ(z) = az+b
cz+d for complex numbers

a, b, c, d, an easy calculation shows that the conditions obtained in Proposi-
tion 4.6 are equivalent to |b| = |c| and ab− cd = bd− ac.

When n ≥ 2 and ϕ(z) = Az+B
〈z,C〉+d , the conditions can then be expressed in

terms of A,B,C and d. We leave this to the interested reader.

We conclude the section by a result taken from [3, Proposition 13] with
a slightly modified proof using Remark 4.8.

Proposition 4.9. Suppose that ϕ is a linear fractional self-map of the unit
disk of parabolic type (so there is an ω with |ω| = 1 such that ϕ(ω) = ω and
ϕ′(ω) = 1). Then the operator WKγ

σ(0)
,ϕ is normal on Hγ for any γ > 0.

Here as before, σ is the adjoint map of ϕ.
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Proof. As it is explained in the proof of [3, Proposition 13], we only need to
consider ω = 1 and ϕ of the form

ϕ(z) =
(2− t)z + t

−tz + (2 + t)
, where Re(t) ≥ 0.

Since a = 2 − t, b = t, c = −t and d = 2 + t, we have |b| = |c| and ab −
cd = bd − ac = 4Re(t). The conclusion now follows from Remark 4.8 and
Proposition 4.6. �

5. Self-adjoint weighted composition operators

In this section we characterize when the adjoint of a weighted composition
operator onHγ is another weighted composition operator. As a consequence,
we determine necessary and sufficient conditions for which the operator Wf,ϕ

is a self-adjoint operator. This generalizes the characterizations obtained in
[9, 8], where the one-dimensional case is considered. Furthermore, our solu-
tions to the equation W ∗g,ψ = Wf,ϕ seems to be new even in one dimension.

We will need the following elementary result regarding maps on the unit
ball of a Hilbert space. The existence of the linear extensions follows from
a similar argument as in the proof of Lemma 3.10. The boundedness is well
known and it is a consequence of the closed graph theorem.

Lemma 5.1. Let M be Hilbert space with an inner product 〈, 〉. Suppose
F and G are two maps from the unit ball B of M into M such that for all
z, w ∈ B, 〈F (w), z〉 = 〈w,G(z)〉. Then there is a bounded linear operator A
on M such that F (w) = Aw and G(w) = A∗w for all w ∈ B.

By (4.4) we see that the adjoint of WKγ
σ(0)

,ϕ is the weighted composition
operator WKγ

ϕ(0)
,σ when ϕ is a linear fractional map and σ is the adjoint

map of ϕ. Our main result in this section shows that any non-zero weighted
composition operator whose adjoint is a weighted composition operator must
be a constant multiple of an operator of this form.

Theorem 5.2. Let f, g be analytic functions on Bn and ϕ,ψ be analytic
self-maps of Bn. Then Wf,ϕ and Wg,ψ are non-zero bounded operators on
Hγ and W ∗g,ψ = Wf,ϕ if and only if there are vectors c, d in Bn, a linear
operator A on Cn and a non-zero complex number α such that

ϕ(z) =
d+Az

1− 〈z, c〉
and ψ(z) =

c+A∗z

1− 〈z, d〉
for all z ∈ Bn, (5.1)

and f = αKγ
c = αKγ

ψ(0), g = αKγ
d = αKγ

ϕ(0). In particular, the maps ϕ
and ψ are linear fractional maps.

Remark 5.3. Note that the map ψ in (5.1) is the adjoint of ϕ. Thus
Theorem 5.2 says, in particular, that if Wg,ψ is the adjoint operator of Wf,ϕ,
then ψ is the adjoint of ϕ.
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Proof. Suppose first W ∗g,ψ = Wf,ϕ on Hγ and they are non-zero operators.
For any z and w in Bn, using (2.1) we have

f(w)Kγ
z (ϕ(w)) = (Wf,ϕK

γ
z )(w) = (W ∗g,ψK

γ
z )(w) = g(z)Kγ

ψ(z)(w). (5.2)

Letting z = 0 in (5.2) gives f(w) = g(0)Kγ
ψ(0)(w) = g(0)

(
1−〈w,ψ(0)〉

)−γ
for w ∈ Bn. This, in particular, implies f(0) = g(0), which is non-zero by
the assumption that operators are non-zero.

Letting w = 0 in (5.2) gives

g(z) = f(0)Kγ
z (ϕ(0)) = f(0)

(
1− 〈ϕ(0), z〉

)−γ for z ∈ Bn.

Substituting the formulas for f, g and K(·, ·) into (5.2) and canceling the
constants, we obtain

(1− 〈w,ψ(0)〉)−γ(1− 〈ϕ(w), z〉)−γ = (1− 〈ϕ(0), z〉)−γ(1− 〈w,ψ(z)〉)−γ .

This identity implies

(1− 〈w,ψ(0)〉)(1− 〈ϕ(w), z〉) = (1− 〈ϕ(0), z〉)(1− 〈w,ψ(z)〉). (5.3)

An easy calculation then gives〈(
1− 〈w,ψ(0)〉

)
ϕ(w)− ϕ(0), z

〉
=
〈
w,
(
1− 〈z, ϕ(0)〉

)
ψ(z)− ψ(0)

〉
.

Using Lemma 5.1, we conclude that there exists a linear operator A on Cn

such that

ϕ(w) =
ϕ(0) +Aw

1− 〈w,ψ(0)〉
and ψ(z) =

ψ(0) +A∗z

1− 〈z, ϕ(0)〉
for all w, z ∈ Bn.

Put α = f(0), c = ψ(0) and d = ϕ(0), we see that f, g and ϕ,ψ satisfy (5.1).
For the converse, suppose f, g and ϕ,ψ are as above such that ϕ and ψ

map the unit ball into itself. Since Wf,ϕ = αWKγ
ψ(0)

,ϕ and Wg,ψ = αWKγ
ϕ(0)

,ψ,
(4.4) gives Wg,ψ = W ∗f,ϕ on Hγ , which is equivalent to Wf,ϕ = W ∗g,ψ. The
boundedness of these operators on Hγ follows from Remark 2.5. �

As an immediate application of Theorem 5.2, we obtain a characterization
of self-adjoint weighted composition operators.

Corollary 5.4. Let f be an analytic function and ϕ an analytic self-map
of Bn. Then Wf,ϕ is a non-zero self-adjoint bounded operator on Hγ if and
only if there is a vector c ∈ Bn, a self-adjoint linear operator A on Cn and a
real number α such that f = αKγ

c = αKγ
ϕ(0) and ϕ(z) = c+Az

1−〈z,c〉 for z ∈ Bn.

Proof. Since W ∗f,ϕ = Wf,ϕ, Theorem 5.2 shows that there are vectors c, d in
Bn, a linear operator A on Cn and a complex number α such that for all
z ∈ Bn, f(z) = αKγ

d = αKγ
c and ϕ(z) = d+Az

1−〈z,c〉 = c+A∗z
1−〈z,d〉 . This shows that

α = α, c = d and A∗ = A and hence f, ϕ have the required form. �
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In [9, 8], the authors go on to describe the eigenvectors, eigenvalues and
other spectral properties of self-adjoint weighted composition operators on
Hγ (γ ≥ 1) of the unit disk. Their analysis is based on the classification of
linear fractional self-maps of the unit disk.

In dimension n ≥ 2 and in the case ϕ has a fixed point in Bn (the el-
liptic case), eigenvectors, eigenvalues and the spectrum of the self-adjoint
operator Wf,ϕ can be described as in Proposition 4.4 and in the discussion
preceding this proposition. The cases where all the fixed points of ϕ lie on
the unit sphere (the parabolic and hyperbolic cases) are, we believe, more
complicated and seem to require more careful analysis. We leave this open
for future research.
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[12] Z̆eljko C̆uc̆ković and Ruhan Zhao, Weighted composition operators on the Bergman
space, J. London Math. Soc. (2) 70 (2004), no. 2, 499–511. MR 2078907 (2005f:47064)

[13] Frank Forelli, The isometries of Hp, Canad. J. Math. 16 (1964), 721–728.
MR 0169081 (29 #6336)

[14] Michael T. Jury, Norms and spectral radii of linear fractional composition operators
on the ball, J. Funct. Anal. 254 (2008), no. 9, 2387–2400. MR 2409166 (2009d:47021)

[15] Valentin Matache, Weighted composition operators on H2 and applications, Complex
Anal. Oper. Theory 2 (2008), no. 1, 169–197. MR 2390678 (2009d:47023)



20 TRIEU LE

[16] Walter Rudin, Function theory in the unit ball of Cn, Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241,
Springer-Verlag, New York, 1980. MR 601594 (82i:32002)

[17] Sei-Ichiro Ueki, Compact weighted composition operators on weighted Bergman spaces,
Acta Sci. Math. (Szeged) 75 (2009), no. 3-4, 693–706. MR 2590357 (2011d:47081)

[18] Ruhan Zhao and Kehe Zhu, Theory of Bergman spaces in the unit ball of Cn, Mém.
Soc. Math. Fr. (N.S.) (2008), no. 115, vi+103 pp. MR 2537698 (2010g:32010)

[19] Kehe Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Math-
ematics, vol. 226, Springer-Verlag, New York, 2005. MR 2115155 (2006d:46035)

[20] , Operator theory in function spaces, second ed., Mathematical Surveys
and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007.
MR 2311536

Department of Mathematics and Statistics, Mail Stop 942, University of
Toledo, Toledo, OH 43606

E-mail address: trieu.le2@utoledo.edu


	1. Introduction
	2. Bounded weighted composition operators
	3. Unitary weighted composition operators
	4. Normal weighted composition operators
	5. Self-adjoint weighted composition operators
	References

