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Abstract. Given a weighted shift T of multiplicity two, we study the
set

√
T of all square roots of T . We determine necessary and sufficient

conditions on the weight sequence so that this set is non-empty. We
show that when such conditions are satisfied,

√
T contains a certain

special class of operators. We also obtain a complete description of all
operators in

√
T .

1. Introduction

Let H be a complex Hilbert space. We use B(H) to denote the algebra
of all bounded linear operators on H. For T ∈ B(H), we are interested in
bounded operators Q for which Q2 = T . If such an operator exists, we say
that T has a square root and in that case we would like to describe

√
T , the

set of all possible square roots of T . It is known that while many operators
have an abundance of square roots, others do not have any square root at all.
Halmos et al. [8] obtained necessary and sufficient conditions on a domain in
the complex plane for which the operator of multiplication by the coordinate
function on the Bergman space possesses a bounded square root. Lebow (see
[6, Solution 111]) showed that when H is infinite dimensional, the set of all
square roots of zero is dense in B(H) in the strong operator topology. On
the other hand, Halmos proved (see [5, p. 894]) that the unilateral shift S
and more generally, weighted shift operators do not have any square root.
It was shown in [1] that the direct sum and the tensor product of S and
its adjoint S∗ do not have square roots either. For properties of square and
nth roots of normal and other classes of general operators, see the papers
[3, 7, 9, 10, 11, 12, 13, 14, 16].

Our work was motivated by a recent paper [15] in which the authors
provide complete descriptions of the set of all square roots of certain well-
known classical operators. More specifically, square roots of the square of
the unilateral shift, the Volterra operator, certain compressed shifts, the
unilateral shift plus its adjoint, the Hilbert matrix, and the Cesàro operator
are discussed. Particularly interesting to us is the square of the unilateral
shift. Let us discuss this case in more details.
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Recall that the Hardy space H2 consists of all holomorphic functions
f(z) =

∑∞
n=0 anz

n on the unit disk for which

∥f∥H2 =
( ∞∑
n=0

|an|2
)1/2

<∞.

The set {en(z) = zn : n = 0, 1, . . .} of monomials forms an orthonormal
basis for H2. The unilateral shift on H2 is defined as

Sen = en+1 for all n ≥ 0.

We see that S is the same as the operator Mz of multiplication by the
variable z:

(Sf)(z) = (Mzf)(z) = zf(z), f ∈ H2. (1.1)

In [15, Section 2], a characterization of
√
S2 is given. Besides the trivial

square root, which is S itself, [15, Remark 2.19(iii)] provides another simple
but interesting square root, which acts on the orthonormal basis as follows:
for n ≥ 0,

S̃en =

{
en+3 if n is even,

en−1 if n is odd.
(1.2)

As it turns out later, weighted versions of S and S̃ play important roles in
our study.

The unilateral shift is a special case of (unilateral) weighted shift opera-
tors. Let {en}∞n=0 be a fixed orthonormal basis for H. A weighted shift is a
linear operator A on H such that

Aen = wnen+1

for all n ≥ 0, where wn ∈ C. Weighted shift operators were investigated
in great details in [17]. It was shown (see [17, Corollary 3]) that if A is an
injective weighted shift, then A has no bounded kth root for any k ≥ 2.

In this paper, we study square roots of A2 for a general injective weighted
shift A. More generally, we shall be interested in square roots of weighted
shift operators of multiplicity two.

Definition 1.1. LetH be a Hilbert space with an orthonormal basis {en}∞n=0.
A weighted shift of multiplicity two with weight sequence {λn}∞n=0 is a
bounded linear operator T on H such that

Ten = λnen+2

for all n ≥ 0, where λn ∈ C.

We alert the reader that there is a more general notion of weighted shift
operators of multiplicity two but we restrict our attention to only those
defined above. Since we assume that T is bounded, the weight sequence
{λn}∞n=0 is bounded. We shall only consider the case T is injective, that is,
λn ̸= 0 for all n ≥ 0. Following the proof of [17, Corollary 1], it can be
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shown that any such T is unitarily equivalent to a weighted shift operator
of multiplicity two with weight sequence {|λn|}∞n=0. Our goal is to find nec-
essary and sufficient conditions on the weight sequence {λn}∞n=0 for which T
has a square root and to determine all possible such square roots. Examples
illustrating various scenarios will be presented.

2. Weighted Hardy spaces and multipliers

One of the crucial ingredients used in [15, Section 2] is the fact that S2,
the square of the unilateral shift, is unitarily equivalent to the direct sum
S ⊕ S. It turns out that any weighted shift operator of multiplicity two is
also unitarily equivalent to the direct sum of two weighted shifts. In order
to establish this result, we need the notion of weighted Hardy spaces (see,
for example, [2, Chapter 2] and [17, Section 4]).

Let β = {βn}∞n=0 be a sequence of positive real numbers. The weighted

Hardy space H2
β consists of all formal power series f =

∑∞
n=0 f̂(n)z

n for
which

∥f∥H2
β
=
( ∞∑
n=0

|f̂(n)|2β2n
)1/2

<∞.

The inner product of any two elements f, g in H2
β is given by

⟨f, g⟩H2
β
=

∞∑
n=0

f̂(n)ĝ(n)β2n.

It is clear that H2
β has {β−1

n zn : n ≥ 0} as an orthonormal basis and hence

the set of all polynomials, C[z], is dense in H2
β.

If βn = 1 for all n, then we obtain the Hardy space H2. In the case βn =
1√
n+1

for all n, we have the standard Bergman space A2. If βn =
√
n+ 1,

then H2
β coincides with the Dirichlet space D.

We shall use Mz to denote the operator of multiplication on H2
β by the

function φ(z) = z. It is immediate that Mz is a weighted shift with weight
sequence {βn+1/βn}∞n=0 so Mz is bounded on H2

β if and only if

sup
{βn+1

βn
: n = 0, 1, . . .

}
<∞.

Let T be a weighted shift operator of multiplicity two with weight se-
quence {λn}∞n=0 such that λn > 0 for all n ≥ 0. Define β0 = ω0 = 1 and

βk = λ0λ2 · · ·λ2k−2, ωk = λ1λ3 · · ·λ2k−1 (2.1)

for all k ≥ 1. We recall the direct sum

H2
β ⊕H2

ω =
{
(f, g) : f ∈ H2

β, g ∈ H2
ω

}
,

on which the inner product is given as〈
(f1, g1), (f2, g2)

〉
H2

β⊕H2
ω

= ⟨f1, f2⟩H2
β
+ ⟨g1, g2⟩H2

ω
.



4 CHANAKA KOTTEGODA, TRIEU LE, AND TOMAS MIGUEL RODRIGUEZ

Define W : H → H2
β ⊕H2

ω by

W
( ∞∑
n=0

µnen
)
=
( ∞∑
n=0

µ2n
βn

zn,
∞∑
n=0

µ2n+1

ωn
zn
)
. (2.2)

Note that

∥∥∥W ( ∞∑
n=0

µnen
)∥∥∥2
H2

β⊕H2
ω

=
∥∥∥ ∞∑
n=0

µ2n
βn

zn
∥∥∥2
H2

β

+
∥∥∥ ∞∑
n=0

µ2n+1

ωn
zn
∥∥∥2
H2

ω

=
( ∞∑
n=0

|µ2n|2
)
+
( ∞∑
n=0

|µ2n+1|2
)

=
∥∥∥ ∞∑
n=0

µnen

∥∥∥2
H
.

SoW is an isometry. On the other hand, the range ofW is dense in H2
β⊕H2

ω

because it contains all pairs of monomials. As a result, W is a unitary
operator. The inverse W−1 : H2

β ⊕H2
ω → H admits the formula

W−1(f, g) =

∞∑
n=0

(
f̂(n)βn e2n + ĝ(n)ωn e2n+1

)
, (2.3)

whenever f =
∑∞

n=0 f̂(n)z
n ∈ H2

β and g =
∑∞

n=0 ĝ(n)z
n ∈ H2

ω.

Proposition 2.1. Let T be a weighted shift of multiplicity two on H with
weight sequence {λn}∞n=0 such that λn > 0 for all n ≥ 0. Then T is unitarily
equivalent to Mz ⊕Mz on H2

β ⊕H2
ω for β and ω defined as in (2.1). In fact,

we have the following commutative diagram:

H H2
β ⊕H2

ω

H H2
β ⊕H2

ω

W

T Mz⊕Mz

W−1

where W is given by (2.2).

Proof. We first note that since T is assumed to be bounded, the weight
sequence {λn}∞n=0 is bounded and hence Mz is bounded on both H2

β and
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H2
ω. For any h =

∑∞
n=0 µnen ∈ H, we have T (h) =

∑∞
n=0 µnen+2 and

W−1(Mz ⊕Mz)W (h) =W (Mz ⊕Mz)

( ∞∑
m=0

µ2m
βm

zm,

∞∑
n=0

µ2n+1

ωn
zn

)

=W−1

( ∞∑
m=0

µ2m
βm

zm+1,
∞∑
n=0

µ2n+1

ωn
zn+1

)

=
∞∑
n=0

(µ2nβn+1

βn
e2n+2 +

µ2n+1ωn+1

ωn
e2n+3

)
=

∞∑
n=0

λnµnen+2

since βn+1/βn = λ2n and ωn+1/ωn = λ2n+1 for all n ≥ 0. Therefore, we
have W−1(Mz ⊕Mz)W = T as desired. □

Proposition 2.1 shows that in order to study the square roots of T , we
need to investigate the square roots of Mz ⊕Mz. Let A ∈ B(H2

β ⊕H2
ω) be a

square root of Mz ⊕Mz. Then A must commute with Mz ⊕Mz. Write

A =

[
A11 A12

A21 A22

]
,

where A11 : H2
β → H2

β, A12 : H2
ω → H2

β, A21 : H2
β → H2

ω and A22 : H2
ω →

H2
ω. Accordingly, we also write

Mz ⊕Mz =

[
Mz 0
0 Mz

]
.

Because A is bounded on H2
β ⊕H2

ω, all operators Aij are bounded. Since A
commutes with Mz ⊕Mz, we have

AijMz =MzAij (2.4)

for i, j ∈ {1, 2}. In order to obtain a characterization of such Aij , we need
the notion of multipliers between two weighted Hardy spaces.

Let β and ω be two sequences of positive real numbers. The multiplier
space Mult(H2

β, H
2
ω) is the set of all formal power series φ such that f · φ

belongs to H2
ω for all f ∈ H2

β. We shall use Mφ to denote the multiplication

operator f 7→ f ·φ. We write Mult(H2
β) to denote the space of all multipliers

of H2
β, that is, Mult(H2

β, H
2
β).

We list here two important facts about multipliers. The case β = ω was
proved in [17, Section 4]. The proofs for β ̸= ω are similar.

(M1) For any φ ∈ Mult(H2
β, H

2
ω), the operator Mφ is bounded from H2

β

into H2
ω. We call the operator norm of Mφ the multiplier norm of

φ.
(M2) If φ ∈ Mult(H2

β, H
2
ω) and ψ ∈ Mult(H2

ω, H
2
γ), then the product φψ

belongs to Mult(H2
β, H

2
γ) and MψMφ =Mψφ.
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The following result generalizes the well-known fact that the commutant
of the unilateral shift on the Hardy spaceH2 is the set of all analytic Toeplitz
operators.

Proposition 2.2. Let β and ω be two sequences of positive real numbers.
Suppose R : H2

β −→ H2
ω is a bounded linear operator such that

MzR = RMz,

where the left-side Mz acts on H
2
ω while the right-side Mz acts on H

2
β. Then

there exists φ ∈ Mult(H2
β, H

2
ω) such that R =Mφ.

Remark 2.3. In the case β = ω, this result is well known, see [17, Theo-
rem 3]. The proof for the general setting is quite similar but for complete-
ness, we provide here the details.

Proof. For all integers n ≥ 0, we have MzR(z
n) = RMz(z

n), which gives

z ·R(zn) = R(zn+1).

Define φ = R(1). It then follows that

R(zk) = φ · zk, ∀ k ≥ 0.

By linearity, for any polynomial p in z,

R(p) = φ · p =Mφp.

From this identity and the boundedness of R, there exists B > 0 such that

∥φ · p∥H2
ω
= ∥R(p)∥H2

ω
≤ B∥p∥H2

β
.

Because polynomials form a dense subset in H2
β, we conclude that φ belongs

to Mult(H2
β, H

2
ω). Since the bounded operators R and Mφ agree on a dense

subspace of H2
β, they are equal on all of H2

β. That is, R =Mφ. □

It is well known that Mult(H2) and Mult(A2) are both equal to H∞, the
algebra of all bounded holomorphic functions on the unit disk. However,
the situation in the general setting becomes quite complicated. It is known
that Mult(A2, H2) = {0} while H∞ ⊊ Mult(H2, A2). Characterizations
of multipliers between Hardy and Bergman spaces over the unit disk and
over more general domains have been considered by several authors. See
[4, 18, 19] and the references therein. In the results below, we offer some
fundamental properties of Mult(H2

β, H
2
ω) which will be needed for our work.

Proposition 2.4. Let φ =
∑∞

n=0 φ̂(n)z
n belong to Mult(H2

β, H
2
ω). Then for

each n ≥ 0, if φ̂(n) ̸= 0, then zn belongs to Mult(H2
β, H

2
ω).

Proof. Consider the multiplication operator Mφ : H2
β → H2

ω defined by

f 7→ f · φ for f ∈ H2
β. By property (M1), Mφ is bounded so there exists

B > 0 such that for f ∈ H2
β,

∥Mφf∥H2
ω
≤ B∥f∥H2

β
.
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Setting f(z) = zm gives( ∞∑
n=0

∥φ̂(n)zn+m∥2H2
ω

)1/2
= ∥Mφ(z

m)∥H2
ω
≤ B∥zm∥H2

β
.

It follows that for all integers n,m ≥ 0, we have

∥φ̂(n)zn+m∥H2
ω
≤ B∥zm∥H2

β
,

which implies

∥zn+m∥H2
ω
≤ B

|φ̂(n)|
∥zm∥H2

β
, ∀ m ≥ 0

provided that φ̂(n) ̸= 0.

Now suppose f(z) =
∑∞

m=0 f̂(m)zm ∈ H2
β. We then have∥∥∥znf(z)∥∥∥2

H2
ω

=
∥∥∥ ∞∑
m=0

f̂(m)zn+m
∥∥∥2
H2

ω

=
∞∑
m=0

|f̂(m)|2 · ∥zn+m∥2H2
ω

≤ B2

|φ̂(n)|2
∞∑
m=0

|f̂(m)|2 · ∥zm∥2H2
β

=
B2

|φ̂(n)|2
∥f∥2H2

β
.

It follows that

∥znf(z)∥H2
ω
≤ B

|φ̂(n)|
∥f∥H2

β
.

Therefore, zn ∈ Mult(H2
β, H

2
ω). □

We now determine conditions for which the multiplier space Mult(H2
β, H

2
ω)

contains a nonzero element or when it contains all polynomials. Motivated
by Proposition 2.1, we only consider weighted Hardy spaces on which the
multiplication operatorMz is bounded. Note that we use C[z] to denote the
space of all polynomials in z.

Theorem 2.5. Let β and ω be two sequences of positive real numbers such
that Mz is bounded on both H2

β and H2
ω. Then

(a) Mult(H2
β, H

2
ω) ̸= {0} if and only if

(
Mult(H2

β, H
2
ω)∩C[z]

)
̸= {0} if

and only if there exists k ≥ 0 such that

sup
{ωn+k

βn
: n = 0, 1, . . .

}
<∞.

(b) C[z] ⊆ Mult(H2
β, H

2
ω) if and only if

sup
{ωn
βn

: n = 0, 1, . . .
}
<∞.
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Proof. We first prove (a). Suppose there exists φ ∈ Mult(H2
β, H

2
ω)\{0}.

Then φ̂(n) ̸= 0 for some index n ≥ 0. Proposition 2.4 tells us that zn ∈
Mult(H2

β, H
2
ω). Therefore, Mult(H2

β, H
2
ω) ∩ C[z] ̸= {0}.

Let 0 ̸= p ∈ Mult(H2
β, H

2
ω) ∩ C[z] with deg p = k ≥ 0. By Proposition

2.4, zk ∈ Mult(H2
β, H

2
ω) and by Property (M1) of multipliers, the operator

Mzk is bounded from H2
β into H2

ω. Thus, there exists C > 0 such that for
all n ≥ 0

∥Mzk(z
n)∥H2

ω
≤ C∥zn∥H2

β
.

Equivalently, for all n ≥ 0, we have

ωn+k ≤ Cβn.

Consequently,

sup
{ωn+k

βn
: n = 0, 1, . . .

}
≤ C <∞.

Now suppose that the previous inequality holds. Then for φ ∈ H2
β,∥∥∥zk ∞∑

n=0

φ̂(n)zn
∥∥∥2
H2

ω

=
∞∑
n=0

|φ̂(n)|2ω2
n+k ≤ C2

∞∑
n=0

|φ̂(n)|2β2n = C2∥φ∥2H2
β
<∞.

Thus zk ∈ Mult(H2
β, H

2
ω) which proves Mult(H2

β, H
2
ω) ̸= {0}.

Now, we prove (b). Suppose C[z] ⊆ Mult(H2
β, H

2
ω). Then in particular,

1 ∈ Mult(H2
β, H

2
ω). By Property (M1), there exists C > 0 such that for all

n ≥ 0,

∥zn∥H2
ω
≤ C∥zn∥H2

β
.

That is,

sup
{ωn
βn

: n = 0, 1, . . .
}
≤ C <∞.

Conversely, if the above supremum is finite, then as we have proved in
(a), the constant function 1 is a multiplier from H2

β into H2
ω. Recall that we

assume Mz is bounded on H2
β, which implies that zk belongs to Mult(H2

β)

for any k ≥ 0. Using Property (M2) of multipliers, we conclude that zk =
1 · zk is an element of Mult(H2

β, H
2
ω). By linearity, it follows that C[z] ⊆

Mult(H2
β, H

2
ω). □

Example 2.6. For each n ≥ 0, define ωn = 1
k! , where k

2 ≤ n < (k + 1)2

and define βn = ωn+1. Note that since k! < kk < (
√
n)

√
n,

1 ≥ ωn ≥ 1

(
√
n)

√
n
for all n.

Therefore, limn→∞ n
√
ωn = 1, which implies that all elements of H2

ω are
holomorphic on the open unit disk D. We also have limn→∞

n
√
βn = 1 so all

elements of H2
β are holomorphic on D.
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Since {ωn}∞n=0 and {βn}∞n=0 are decreasing sequences, Mz are bounded on
both H2

ω and H2
β. On the other hand,

sup
{ωn
βn

: n = 0, 1, . . .
}
= sup

{ ωn
ωn+1

: n = 0, 1, . . .
}
= ∞

so 1 is not a multiplier from H2
β into H2

ω. But

sup
{βn
ωn

: n = 0, 1, . . .
}
= sup

{ωn+1

ωn
: n = 0, 1, . . .

}
<∞

so 1 is a multiplier from H2
ω into H2

β. In addition, since ωn+1 = βn for all

n ≥ 0, the operator Mz is an isometry from H2
β into H2

ω. Furthermore,

Proposition 2.4 implies that for any φ =
∑∞

n=0 φ̂(n)z
n ∈ Mult(H2

β, H
2
ω), we

have φ̂(0) = 0.

As we shall see in Section 3, the characterization of
√
Mz ⊕Mz involves

multipliers a, b and c satisfying the equation a2 + bc = z. We conclude this
section with two results concerning such multipliers.

Lemma 2.7. Let a =
∑∞

n=0 â(n)z
n, b =

∑∞
n=0 b̂(n)z

n and c =
∑∞

n=0 ĉ(n)z
n

be formal power series in z such that

a2 + bc = z.

Then exactly one of the following statements is true.

(i) b̂(0)ĉ(0) ̸= 0.

(ii) b̂(0) = 0, b̂(1) ̸= 0 and ĉ(0) ̸= 0.

(iii) ĉ(0) = 0, ĉ(1) ̸= 0 and b̂(0) ̸= 0.

In particular, both b and c are nonzero power series.

Proof. By considering the constant coefficients and the coefficients of z on
both sides of the equation a2 + bc = z, we have

(â(0))2 + b̂(0)ĉ(0) = 0 and 2â(0)â(1) + b̂(0)ĉ(1) + b̂(1)ĉ(0) = 1.

If b̂(0) = 0, then â(0) = 0 and so b̂(1)ĉ(0) = 1, which implies that both

b̂(1) and ĉ(0) are nonzero. On the other hand, if ĉ(0) = 0, then â(0) = 0

and so b̂(0)ĉ(1) = 1, which implies that both ĉ(1) and b̂(0) are nonzero. □

Proposition 2.8. Suppose Mz is bounded on both H2
β and H2

ω and there

exist formal power series a ∈ Mult(H2
β)∩Mult(H2

ω), b ∈ Mult(H2
ω, H

2
β) and

c ∈ Mult(H2
β, H

2
ω) such that

a2 + bc = z.

Then z ∈ Mult(H2
ω, H

2
β) ∩ Mult(H2

β, H
2
ω), and either 1 ∈ Mult(H2

ω, H
2
β) or

1 ∈ Mult(H2
β, H

2
ω).
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Proof. Write a =
∑∞

n=0 â(n)z
n, b =

∑∞
n=0 b̂(n)z

n and c =
∑∞

n=0 ĉ(n)z
n. By

Lemma 2.7, we have three cases to consider. Firstly, suppose that b̂(0)ĉ(0) ̸=
0. Then by Proposition 2.4, the constant function 1 is a multiplier from H2

β

into H2
ω and also from H2

ω into H2
β. It follows that H

2
β = H2

ω (with equivalent

norms) and C[z] ⊆ Mult(H2
ω, H

2
β) ∩Mult(H2

β, H
2
ω).

Secondly, consider the case b̂(0) = 0, b̂(1) ̸= 0 and ĉ(0) ̸= 0. Then by
Proposition 2.4, z ∈ Mult(H2

ω, H
2
β) and 1 ∈ Mult(H2

β, H
2
ω). Using Property

(M2) of multipliers and the fact that Mz is bounded on H2
ω, we conclude

that z ∈ Mult(H2
β, H

2
ω) as well.

Lastly, if ĉ(0) = 0, ĉ(1) ̸= 0 and b̂(0) ̸= 0, then a similar argument as in the
second case proves that 1 ∈ Mult(H2

ω, H
2
β) and z belongs to Mult(H2

ω, H
2
β)∩

Mult(H2
β, H

2
ω). □

3. Characterization of square roots

Proposition 2.1 shows that in order to study the square roots of weighted
shifts of multiplicity two, we need to investigate the square roots ofMz⊕Mz.
The following result offers the description of any such bounded square root.
In the Hardy space case, we recover [15, Theorem 2.7], even though our
statement is slightly different.

Theorem 3.1. Let β and ω be two sequences of positive real numbers such
that Mz is bounded on both H2

β and H2
ω. For A ∈ B(H2

β⊕H2
ω), the following

statements are equivalent.

(a) A2 =Mz ⊕Mz.
(b) There exist a ∈ Mult(H2

β) ∩Mult(H2
ω), b ∈ Mult(H2

ω, H
2
β) and c ∈

Mult(H2
β, H

2
ω) satisfying

a2 + bc = z

such that

A =

[
Ma Mb

Mc −Ma

]
.

Proof. Suppose (a) holds. Write

A =

[
A11 A12

A21 A22

]
,

where A11 : H2
β → H2

β, A12 : H2
ω → H2

β, A21 : H2
β → H2

ω and A22 : H2
ω →

H2
ω. As we have seen in (2.4), these are all bounded operators that satisfy

AijMz =MzAij

for i, j ∈ {1, 2}. By Proposition 2.2, there exist power series a ∈ Mult(H2
β),

b ∈ Mult(H2
ω, H

2
β), c ∈ Mult(H2

β, H
2
ω) and d ∈ Mult(H2

ω) such that

A =

[
Ma Mb

Mc Md

]
.
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Squaring A, we obtain[
Mz 0
0 Mz

]
= A2 =

[
Ma2+bc Mab+bd

Mca+dc Mcb+d2

]
,

which gives

a2 + bc = cb+ d2 = z and b(a+ d) = c(a+ d) = 0.

By Lemma 2.7, the first two identities imply that both b and c are nonzero
power series. This, together with the last two identities and the fact that the
ring of power series does not have zero divisors gives a+ d = 0. Therefore,
d = −a and hence,

A =

[
Ma Mb

Mc −Ma

]
for a ∈ Mult(H2

β) ∩ Mult(H2
ω), b ∈ Mult(H2

ω, H
2
β) and c ∈ Mult(H2

β, H
2
ω)

satisfying a2 + bc = z.
Suppose now that (b) holds. Then A is a bounded operator on H2

β ⊕H2
ω

and since Ma commute with both Mb and Mc, we have

A2 =

[
MaMa +MbMc MaMb −MbMa

McMa −MaMc McMb +MaMa

]
=

[
Ma2+bc 0

0 Ma2+bc

]
.

Because a2 + bc = z, it follows that A2 =Mz ⊕Mz. □

Theorem 3.1 combined with Proposition 2.8 provides us necessary and
sufficient conditions for the existence of a bounded square root of Mz ⊕Mz.

Proposition 3.2. Let β and ω be two sequences of positive real numbers
such that Mz is bounded on both H2

β and H2
ω. Consider Mz ⊕ Mz as a

bounded operator on H2
β ⊕ H2

ω. Then
√
Mz ⊕Mz ̸= ∅ if and only if one

(possibly both) of the following two cases occurs:

(a) sup
{
ωn
βn

: n = 0, 1, . . .
}
<∞ and sup

{
βn+1

ωn
: n = 0, 1, . . .

}
<∞.

In this case, Qµ =

[
0 µMz

µ−1 0

]
belongs to

√
Mz ⊕Mz for all µ ̸= 0.

(b) sup
{
βn
ωn

: n = 0, 1, . . .
}
<∞ and sup

{
ωn+1

βn
: n = 0, 1, . . .

}
<∞.

In this case, Rµ =

[
0 µ−1

µMz 0

]
belongs to

√
Mz ⊕Mz for all µ ̸= 0.

Proof. It is clear that if (a) or (b) holds, then
√
Mz ⊕Mz is nonempty since

it contains all Qµ or Rµ (or both) for µ ̸= 0.
Now suppose there exists a bounded operator A on H2

β ⊕ H2
ω such that

A2 =Mz ⊕Mz. Then by Theorem 3.1

A =

[
Ma Mb

Mc −Ma

]
,
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where a ∈ Mult(H2
β) ∩Mult(H2

ω), b ∈ Mult(H2
ω, H

2
β) and c ∈ Mult(H2

β, H
2
ω)

satisfying a2 + bc = z. Using Proposition 2.8, we conclude that the multi-
plication operator Mz is bounded from H2

β into H2
ω and also from H2

ω into

H2
β. This implies that

sup
{ωn+1

βn
: n = 0, 1, . . .

}
<∞ and sup

{βn+1

ωn
: n = 0, 1, . . .

}
<∞.

Also from Proposition 2.8, we have two cases. If 1 ∈ Mult(H2
β, H

2
ω), then

sup
{ωn
βn

: n = 0, 1, . . .
}
<∞

and the matrix Qµ represents a bounded operator on H2
β⊕H2

ω for any µ ̸= 0.

A direct calculation shows (Qµ)
2 =Mz ⊕Mz. Therefore, (a) holds.

If 1 ∈ Mult(H2
ω, H

2
β), then

sup
{βn
ωn

: n = 0, 1, . . .
}
<∞

and Rµ is a bounded operator on H2
β⊕H2

ω which satisfies (Rµ)
2 =Mz⊕Mz

for all µ ̸= 0. Hence, (b) holds. □

Now suppose T is a weighted shift of multiplicity two with weight sequence
{λn}∞n=0 such that λn > 0 for all n. Proposition 3.2 and Theorem 3.1
describe all possible square roots of T . On the other hand, Propositions
3.2 and 2.1 together provide us a necessary and sufficient condition on the
sequence {λn}∞n=0 for the existence of bounded square roots of T . Recall
that β0 = ω0 = 1 and for all n ≥ 1,

βn = λ0λ2 · · ·λ2n−2, ωn = λ1λ3 · · ·λ2n−1.

Theorem 3.3. Let H be a Hilbert space with an orthonormal basis {en}∞n=0.
Let T be an injective weighted shift of multiplicity two with weight sequence
{λn}∞n=0 with respect to {en}∞n=0. For any Q ∈ B(H), the following state-
ments are equivalent.

(a) Q2 = T .
(b) There exist power series a ∈ Mult(H2

β)∩Mult(H2
ω), b ∈ Mult(H2

ω, H
2
β)

and c ∈ Mult(H2
β, H

2
ω) satisfying

a2 + bc = z

such that

Q =W−1

[
Ma Mb

Mc −Ma

]
W,
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where W is given by (2.2). Equivalently, for all integers n ≥ 0,

Q(e2n) =
∞∑
m=n

(
â(m− n)

βm
βn
e2m + ĉ(m− n)

ωm
βn

e2m+1

)
,

Q(e2n+1) =

∞∑
m=n

(
b̂(m− n)

βm
ωn

e2m − â(m− n)
ωm
ωn

e2m+1

)
.

We recall here that for a power series φ, we use φ̂(j) to denote the
coefficient of zj.

Proof. By Proposition 2.1, we have T = W−1(Mz ⊕Mz)W . As a conse-
quence, Q2 = T if and only if Q = W−1AW , where A2 = Mz ⊕ Mz on
H2
β⊕H2

ω. The equivalence of (a) and (b) now follows from Theorem 3.1. To

obtain the formulas for Q(e2n) and Q(e2n+1), we note that

W (e2n) =
( 1

βn
zn, 0

)
and W (e2n+1) =

(
0,

1

ωn
zn
)
.

As a consequence,[
Ma Mb

Mc −Ma

]
W (e2n) =

( ∞∑
m=n

â(m− n)

βn
zm,

∞∑
m=n

ĉ(m− n)

βn
zm
)
,

and[
Ma Mb

Mc −Ma

]
W (e2n+1) =

( ∞∑
m=n

b̂(m− n)

ωn
zm, −

∞∑
m=n

â(m− n)

ωn
zm
)
.

The required formulas then follow from the definition ofW−1 as in (2.3). □

Theorem 3.4. Let T be an injective bounded weighted shift operator of
multiplicity two with weight sequence {λn}∞n=0. Then

√
T ̸= ∅ if and only

if there exists a positive constant C such that one (or both) of the following
conditions holds:

(a)
1

C
· |λ2n| ≤

∣∣∣λ1λ3 · · ·λ2n−1

λ0λ2 · · ·λ2n−2

∣∣∣ ≤ C for all n ≥ 1. In this case, for any

µ ̸= 0, the unilateral weighted shift Qµ defined as Qµ(ej) = wjej+1

is a bounded square root of T , where

wj =



µ if j = 0,

λ0µ
−1 if j = 1,

λ1λ3···λ2n−1

λ0λ2···λ2n−2
µ if j = 2n with n ≥ 1,

λ0λ2···λ2n−2λ2n
λ1λ3···λ2n−1

µ−1 if j = 2n+ 1 with n ≥ 1.
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(b)
1

C
· |λ2n+1| ≤

∣∣∣λ0λ2 · · ·λ2n−2

λ1λ3 · · ·λ2n−1

∣∣∣ ≤ C for all n ≥ 1. In this case, for

any µ ̸= 0, the operator Rµ defined as

Rµ(ej) =

{
wjej+3 if j is even

wjej−1 if j is odd

is a bounded square root of T , where

wj =



λ1µ if j = 0,

µ−1 if j = 1,
λ1λ3···λ2n−1λ2n+1

λ0λ2···λ2n−2
µ if j = 2n with n ≥ 1,

λ0λ2···λ2n−2

λ1λ3···λ2n−1
µ−1 if j = 2n+ 1 with n ≥ 1.

Proof. As noted in Introduction, T is unitarily equivalent to a weighted shift
of multiplicity two with weight sequence {|λn|}∞n=0. Therefore, without loss
of generality, we may assume that λn > 0 for all n. Then as in the proof
of Theorem 3.3, a bounded operator Q is a square root of T if and only if
Q =W−1AW , where A is a square root of Mz ⊕Mz on H2

β ⊕H2
ω.

Note that for n ≥ 1,

ωn
βn

=
λ1λ3 · · ·λ2n−1

λ0λ2 · · ·λ2n−2
,

βn+1

ωn
=

λ0λ2 · · ·λ2n
λ1λ3 · · ·λ2n−1

,

and

βn
ωn

=
λ0λ2 · · ·λ2n−2

λ1λ3 · · ·λ2n−1
,

ωn+1

βn
=
λ1λ3 · · ·λ2n+1

λ0λ2 · · ·λ2n−2
.

The conclusion of the theorem then follows from Proposition 3.2. The for-
mulas for Qµ and Rµ follows from those in Theorem 3.3(b). □

Remark 3.5. If T = S2, the square of the unilateral shift, then both
conditions (a) and (b) hold. The operator Q1 coincides with S while R1 is

the same as S̃ defined in (1.2). For general T , while Qµ is a weighted shift

(a weighed version of S), the operator Rµ is a weighted version of S̃. It is

surprising that if
√
T ̸= ∅, then either weighted shifts or weighted versions

of S̃ must be square roots of T .

Since both conditions (a) and (b) in Theorem 3.4 are invariant under
taking pth powers for any p > 0, we obtain the following corollary.

Corollary 3.6. Let T be an injective bounded weighted shift operator of mul-
tiplicity two with weight sequence {λn}∞n=0. Suppose T has bounded square
roots. Then for any p > 0, the weighted shift operator of multiplicity two
with weight sequence {λpn}∞n=0 also possesses bounded square roots. (Here,
λpn can be taken to be any pth power of λn.)
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Example 3.7. Consider T the square of an injective bounded unilateral
weighted shift with weight sequence {δn}∞n=0. Then T is an injective weighted
shift of multiplicity two whose weight sequence is given by λn = δnδn+1 for
all n ≥ 0. Due to the fact that the sequence {δn}∞n=0 is bounded, a direct
calculation shows that condition (a) in Theorem 3.4 holds. It follows that

Qµ ∈
√
T for all µ ̸= 0. In particular, for µ = δ0, we recover the original

unilateral weighted shift.
On the other hand, since

λ0λ2 · · ·λ2n−2

λ1λ3 · · ·λ2n−1
=

δ0
δ2n

,

condition (b) in Theorem 3.4 holds if and only if |δ2n| ≥ |δ0|/C for all
n ≥ 0, that is, {|δ2n|}∞n=0 is bounded away from zero. If this condition is
not satisfied, then for µ ̸= 0, the operator Rµ is not bounded, hence, cannot

belong to
√
T .

Example 3.8. In this example, we examine the square roots of T = M2
z

on H2
γ for a class of weight sequences γ = {γn}∞n=0. We assume that Mz is

bounded on H2
γ . It is immediate that T is a weighted shift of multiplicity

two with weight sequence {λn}∞n=0 given by

λn =
γn+2

γn
, n ≥ 0.

Recall that with this T , we associate the sequences β and ω defined by
β0 = ω0 = 1 and for n ≥ 1,

βn = λ0λ2 · · ·λ2n−2 =
γ2n
γ0

and ωn = λ1λ3 · · ·λ2n−1 =
γ2n+1

γ1
.

We assume further that there is a constant C > 1 such that
γn
C

≤ γ2n ≤ Cγn, and
γn
C

≤ γ2n+1 ≤ Cγn for all n ≥ 0.

(Note that these two conditions are satisfied by all the classical spaces in-
cluding the Hardy, weighted Bergman, and Dirichlet spaces.) It then follows
that the spaces H2

β, H
2
ω and H2

γ are the same as sets and their norms are

equivalent. As a consequence, the multiplier spaces Mult(H2
β), Mult(H2

ω),

Mult(H2
β, H

2
ω) and Mult(H2

β, H
2
ω) are all equal. Let us denote this common

multiplier space by M. Theorem 3.3 asserts that a bounded operator Q on
H2
γ is a square root of M2

z if and only if there exist a, b, c ∈ M satisfying

a2 + bc = z such that

Q
(z2n
γ2n

)
=

∞∑
m=n

(
â(m− n)

βm
βn

z2m

γ2m
+ ĉ(m− n)

ωm
βn

z2m+1

γ2m+1

)
=

∞∑
m=n

(
â(m− n)

z2m

γ2n
+ ĉ(m− n)

γ0
γ1

z2m+1

γ2n

)
,
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which gives

Q(z2n) =
(
a(z2) +

γ0
γ1
z · c(z2)

)
z2n.

Similarly,

Q
(z2n+1

γ2n+1

)
=

∞∑
m=n

(
b̂(m− n)

βm
ωn

z2m

γ2m
− â(m− n)

ωm
ωn

z2m+1

γ2m+1

)
=

∞∑
m=n

(γ1
γ0
b̂(m− n)

z2m

γ2n+1
− â(m− n)

z2m+1

γ2n+1

)
,

which gives

Q(z2n+1) =
(γ1
γ0
b(z)− z · a(z2)

)
z2n.

It follows that

(Qg)(z) =
(
a(z2) +

γ0
γ1
z · c(z2)

)
ge(z) +

(γ1
γ0
b(z2)− z · a(z2)

)go(z)
z

.

Here, for g(z) =
∑∞

n=0 ĝ(n)z
n ∈ H2

γ , we define the even component ge(z) =∑∞
n=0 ĝ(2n)z

2n and the odd component go(z) =
∑∞

n=0 ĝ(2n + 1)z2n+1. Re-
placing b(z) by γ0

γ1
b(z) and c(z) by γ1

γ0
c(z), we may write

(Qg)(z) =
(
a(z2) + z · c(z2)

)
ge(z) +

(
b(z2)− z · a(z2)

)go(z)
z

. (3.1)

In the case H2
γ is the Hardy space or any weighted Bergman space over

the unit disk, the multiplier space M is equal to H∞. Formula (3.1) (with
a, b, c ∈ H∞) then provides a complete description of all square roots of M2

z

on these spaces.
We also remark that (3.1) becomes formula (2.20) in [15] if we replace

a(z) by z · a(z) and c(z) by z · c(z).

We conclude the paper with an example of a bounded weighted shift of
multiplicity two which does not have any square root.

Example 3.9. Define λn = 1 for all odd positive integers n. For even n ≥ 0,
define λn = 2 or 1

2 in the following pattern: 2 appears once, 1
2 appears twice,

then 2 appears four times, then 1
2 appears eight times, etc. The first several

terms of the full sequence {λn}∞n=0 are

2, 1,
1

2
, 1,

1

2
, 1, 2, 1, 2, 1, 2, 1, 2, 1,

1

2
, 1,

1

2
, 1,

1

2
, 1,

1

2
, 1,

1

2
, 1,

1

2
, 1,

1

2
, 1,

1

2
, 1, 2, . . .

We see that

sup
{λ1λ3 · · ·λ2n−1

λ0λ2 · · ·λ2n−2
: n ≥ 1

}
= sup

{ 1

λ0λ2 · · ·λ2n−2
: n ≥ 1

}
= ∞,

and

sup
{λ0λ2 · · ·λ2n−2

λ1λ3 · · ·λ2n−1
: n ≥ 1

}
= sup

{
λ0λ2 · · ·λ2n−2 : n ≥ 1

}
= ∞.
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Let T be a weighted shift operator of multiplicity two with the above weight
sequence. It then follows from Theorem 3.4 that

√
T = ∅.
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