THE STRUCTURE OF m-ISOMETRIC WEIGHTED SHIFT
OPERATORS

BELAL ABDULLAH AND TRIEU LE

ABSTRACT. We obtain simple characterizations of unilateral and bilat-
eral weighted shift operators that are m-isometric. We show that any
such operator is a Hadamard product of 2-isometries and 3-isometries.
We also study weighted shift operators whose powers are m-isometric.

1. INTRODUCTION

Throughout the paper, H denotes a separable infinite dimensional com-
plex Hilbert space. Let m > 1 be an integer. A bounded linear operator T'
on H is said to be m-isometric if it satisfies the operator equation

i(—nm—k (7:) 7Tk = 0, (1.1)

k=0

where T* denotes the adjoint of T and T*0 = T° = I, the identity operator
on H. It is immediate that T is m-isometric if and only if

m

Syt (1) irtal <o (12)
k=0 K

for all x € H. It is well known and not difficult to check that any m-
isometric operator is k-isometric for any & > m. We say that T is strictly
m-isometric (or equivalently, T' is a strict m-isometry) if T' is m-isometric
but it is not (m—1)-isometric. Clearly, any 1-isometric operator is isometric.
This notion of m-isometries was introduced by Agler [1] back in the early
nineties in connection with the study of disconjugacy of Toeplitz operators.
The general theory of m-isometric operators was later investigated in great
details by Agler and Stankus in a series of three papers [2H4].

In this paper, we are investigating unilateral as well as bilateral weighted
shift operators that are m-isometric. Examples of such unilateral weighted
shifts were given by Athavale [5] in his study of multiplication operators on
certain reproducing kernel Hilbert spaces over the unit disk. In [9], Botelho
and Jamison provided other examples of strictly 2-isometric and 3-isometric
unilateral weighted shifts. Recently, Bermudéz et al. |§] obtained a charac-
terization for a unilateral weighted shift to be an m-isometry. However, their
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characterization appears difficult to apply. In fact, combinatorial identities
are often involved in checking whether a given unilateral weighted shift satis-
fies their criterion to be an m-isometry. See [8, Corollary 3.8]. Here, we offer
a more simplified characterization of m-isometric weighted shifts. Our ap-
proach works not only for unilateral shifts but also for bilateral shifts. Even
though our characterization is equivalent to the characterization given in [8],
it is more transparent and useful. We shall see how our result quickly re-
covers several known examples. We further obtain an interesting structural
result which says that for m > 2, any strictly m-isometric weighted shift
is the Hadamard product (also known as the Schur product) of strictly 2-
isometric or 3-isometric weighted shifts. We shall also study weighted shifts
whose powers are m-isometric. Similar results will be proven for weighted
bilateral shifts. Our characterization of m-isometric weighted bilateral shifts
offers several examples which include the examples considered in a recent
paper [10].

The paper is organized as follows. In Section 2, we provide a detailed
study of unilateral weighted shifts which are m-isometric. The main result
in this section gives a complete characterization of such operators. Several
examples will be given. In Section 3, we discuss Hadamard products of
m-isometric weighted shifts. We prove a factorization theorem for these
operators. We then study weighted shifts whose powers are m-isometric
in Section 4. Several examples are discussed. Finally, in Section 5, we
investigate bilateral weighted shifts. A characterization and a factorization
theorem for m-isometric bilateral weighted shifts are given.

2. m-ISOMETRIC UNILATERAL WEIGHTED SHIFT OPERATORS

Fix an orthonormal basis {e, },>1 of H. For a sequence of complex num-
bers {wy, }n>1, the associated weighted unilateral shift operator S is a linear
operator on H with

Sen, = wpept1 for alln > 1.

It is well known and is not difficult to see that S is a bounded operator if and
only if the weight sequence {wy,}n>1 is bounded. We shall always assume
that S is a bounded weighted shift operator. The reader is referred to [14]
for an excellent source on the study of these operators. In this paper, we
only focus our attention on weighted shifts that are m-isometric.

Since Se, = wpeny1 for all n > 1, we see that SFe, = ( IZI:_I Wy)€nik
for £ > 1. Consequently,

0 if n <k
S*ken: {( n—1 =



3

Therefore, S**S* is a diagonal operator with respect to the orthonormal
basis {e,}5°; and
k+n—1
Sk Gke, = ( H |wg|2>en.
{=n

Now assume that S is an m-isometry. That is, S satisfies equation , and
equivalently, equation . We collect here two well-known facts about the
weight sequence of S. See [8, Propositions 3.1 and 3.2] and also |9, Equation
(4]

(a) From , it follows that any m-isometry is bounded below, hence,

injective. Consequently, w, # 0 for all n > 1.
(b) S is m-isometric if and only if for any integer n > 1,

m m k4+n—1
e o () (CTT k) =o (2.1)
k=1 l=n
By studying the infinite system of equations , Bermidez et al. [8, The-
orem 3.4] gives a characterization of the weight sequence {wy},>1. Here,
using a different approach, namely, the theory of Difference Equations, we
obtain an equivalent but more transparent characterization. As a conse-
quence, we derive interesting properties of m-isometric weighted shifts which
have not been discovered before. The technique of Difference Equations has
been used (but for a different purpose) in the study of m-isometries in [6,/7].

Theorem 1. Let S be a unilateral weighted shift with weight sequence {wy, }n>1.
Then the following statements are equivalent.
(a) S is an m-isometry.
(b) There exists a polynomial p of degree at most m — 1 with real coef-
ficients such that for all integers n > 1, we have p(n) > 0 and

p(n+1)

p(n)
The polynomial p may be taken to be monic.

lw,|? = ) (2.2)

Proof. We define a new sequence of numbers {uy, },>1 as follows. Set u; =1
and u, := H;‘:—ll |w;|? if n > 2. Since w; # 0 for any j as we have remarked
above, all u,, are positive. We have |w,|? = 4,11 /u, and more generally,
k+n—1
H |U/g|2 = ukj)
{=n Un

for all integers n > 1 and k£ > 1.

From , we see that S is an m-isometry if and only if the sequence
{un}n>1 is a solution to the difference equation

(=)™ + Z(—l)mfk <T:> Bk 0 foralln > 1.
k=1

Unp,
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This equation is equivalent to

m
> o (=1ymk <7Z> Upyn =0 forall n > 1. (2.3)
k=0
The characteristic polynomial of this linear difference equation is

“ m

m—Fk k m
100 = Lo ()= -1

k=0
Since A = 1 is the only root of f with multiplicity m, the theory of Linear
Difference Equations (see, for example, |12, Section 2.3]) shows that {w, },>1
is a solution of if and only if u,, is a polynomial in n of degree at most
m — 1.

The argument we have so far shows that S is an m-isometry if and only
if there is a polynomial ¢ of degree at most m — 1 with real coefficients such
that u, = q(n) for all n > 1.

We now prove the implication (a) = (b). Suppose S is an m-isometry.
Consider the polynomial ¢ given in the preceding paragraph. Since ¢ is
positive at all positive integers, the leading coefficient « of ¢ must be positive.

Put p = ¢/a. Then p is a monic polynomial and for all n > 1, we have
p(n) =q(n)/a > 0 and

v = W+t _alnt1)  pnt1)
" Un, Q(n) p(n)

For the implication (b) = (a), suppose there is a polynomial p of degree
at most m — 1 with real coefficients such that p(n) > 0 and |w,|> = p(n +
1)/p(n) for all n > 1. Set q(n) = p(n)/p(1). Then we have u; = 1 = ¢(1)
and for n > 2,

n—1 n—1 .
2 p(G+1)  p(n)
wn = [ oyl = TR - 20 )
i i €) p(1)
Since ¢ is of degree at most m — 1, we conclude that {uy}n>1 solves the
difference equation ([2.3)). Consequently, S is an m-isometry. ([

Remark 2. The monic polynomial p satisfying (b) in Theorem (1} if exists,
is unique. Indeed, suppose p is another monic polynomial such that |w,|? =
p(n + 1)/p(n) and p(n) > 0 for all integers n > 1. Then for any integer
k> 2,

=

(k) %= (k)
p(1) 13“’”2 o)

Since the polynomials p/p(1) and p/p(1) agree at all integer values k > 2,
they must be the same polynomial. Therefore, p/p(1) = p/p(1), which
implies that p = (p(1)/p(1))p. Because both p and p are monic, it follows
that p(1)/p(1) = 1 and hence, p = p.

/-\
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As an immediate corollary to Theorem|[I] we characterize unilateral weighted
shifts that are strictly m-isometric.

Corollary 3. A unilateral weighted shift S is strictly m-isometric if and
only if there exists a polynomial p of degree m — 1 that satisfies condition

(b) in Theorem [1]

Proof. We consider first the “only if” direction. Suppose S is a strict m-
isometry. Then the polynomial p in Theorem [I] has degree at most m — 1. If
the degree of p were strictly smaller than m — 1, then another application of
T heoremshows that S would be (m—1)-isometric, which is a contradiction.
Therefore, the degree of p must be exactly m — 1.

Now consider the “if” direction. Suppose |w,|? = p(n + 1)/p(n) for all
n > 1, where p is a polynomial of degree m — 1. We know from Theorem
that S is m-isometric. By Remark [2 there does not exist a polynomial ¢
with degree at most m — 2 such that |w,|?> = g(n + 1)/q(n) for all n > 1.
Theorem (1] then implies that S is not an (m — 1)-isometry. Therefore, S is
strictly m-isometric. O

We now apply Corollary [3| to investigate several examples.

Example 4. A unilateral weighted shift S is a strict 2-isometry if and
only if there is a monic polynomial p of degree 1 such that p(n) > 0 and
|wn|? = p(n+1)/p(n) for all n > 1. Write p(n) = n— b for some real number
b. The positivity of p at the positive integers forces b to be smaller than 1.

We conclude that S is a strict 2-isometry if and only if there exists a real
number b < 1 such that

1-b
Wy| = ntl=b for all integers n > 1.
b
n [e—

Choosing b = 0, we recover the well-known fact [13] that the Dirichlet
shift is a strict 2-isometry.

Example 5. A unilateral weighted shift S is a strict 3-isometry if and
only if there is a monic polynomial p of degree 2 such that p(n) > 0 and
|wn|? = p(n 4 1)/p(n) for all n > 1. Write p(z) = (z — a)(z — 3) for some
complex numbers « and . Since p is positive at all positive integers, one of
the following three cases must occur:

(1) Both o and 3 belong to C\R. An example is p(z) = 22 — 5z + 7.
In this case,
p(n+1) n?2-3n+3

2
= = for all n > 1.
[wal p(n) n2—bnt7 =

This example appeared in [9, Section 2.1].

(2) There exists an integer ng > 1 such that both o and 5 belong to
the open interval (ng,ng + 1).

(3) Both « and 3 belong to the interval (—oo, 1).
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Example 6. For each integer m > 1, consider the unilateral weighted shift
S with the weight sequence given by

n-+m

Wy, = for all n > 1.

n

This operator was considered in [5, Proposition 8] and [8, Corollary 3.8],
where it was verified to be a strict (m + 1)-isometry. We provide here
another proof of this fact. Put p(z) = (z +m — 1)---2. Then p is a monic
polynomial of degree m and for all integers n > 1, we have p(n) > 0 and

p(n+1)  [(n+m)---(n+1) n+m_w
\/ p(n) _\/(n—l—m—l)...n _\/T— n-

By Corollary |3 S is strictly (m + 1)-isometric.

Theorem 1| shows that in order for S to be m-isometric, the values |wy, |*
must be a rational function of n and lim, . |w,|? = 1. This immediately
raises the following question.

Question. Suppose S is a unilateral weighted shift with the weight sequence
{wp,}n>1. Suppose there are two polynomials f and g with real coefficients
such that |wy,|?> = f(n)/g(n) and that lim, . f(n)/g(n) = 1. What con-
ditions must f and g satisfy to ensure that S is an m-isometry for some
integer m > 27

Example [6] shows that the relation between f and g is not at all obvious.
While it is possible to obtain a criterion that involves the roots of f and g,
such a criterion may not be useful or practical. On the other hand, we do not
know if it is possible to find a condition that involves only the coefficients
of f and ¢g. This may have an interesting answer.

In the rest of the section, we investigate m-isometric weighted shift oper-
ators whose weight sequence starts with a given finite set of values. More
specifically, let » > 1 be an integer and let ai,...,a, be nonzero complex
numbers. We are interested in the question: does there exist an m-isometric
unilateral weighted shift S such that Sey = agegy; forall 1 < k < r? By
Theorem |1} the answer to this question hinges on the existence of a poly-
nomial p such that p(n) > 0 for all n > 1 and |ax|? = p(k + 1)/p(k) for
1 < k < r. The following result shows the existence of such a polynomial.

Proposition 7. Let r > 1 be an integer and let ay, ..., a, be nonzero com-
plex numbers. For any m > r+ 2, there exists a strictly m-isometric unilat-
eral weighted shift operator whose weight sequence starts with ay, ..., a,.

Proof. By Lagrange interpolation, there exists a polynomial f of degree at
most 7 such that f(1) =1 and

f(k):|6L1|2"'|CL/I<;_1|2 for2<k<r+1.
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Let m > r + 2. We shall look for a polynomial p with degree m — 1 in the
form

pla)=a"" "z 1) (z—r 1) +af(z)
such that p(n) > 0 for all integers n > 1. Here « is a positive number that
we need to determine. Note that p(k) = af(k) >0forall 1 <k <r+1so
we only need to find « such that p(n) > 0 for n > r + 2. This is equivalent

to
{ —f(z)
xm—r—2(x _ 1) e (.’IJ —r — 1)
Since the rational function on the right hand is continuous on [r + 2,00)
and its limit at infinity is zero, the above supremum is finite. Consequently,
there exists such an «. Note that p is a monic polynomial of degree m — 1
and for 1 <k <,

1
— > sup
Q

: 3321"—1—2}.

al? = f(k+1) _ af(k+1) _ p(k+1)
f(k) af(k) p(k)
Let S be the unilateral weighted shift operator whose weight sequence {wy, } n>1
is given by wy, = a, for 1 <n <r and

p(n+1)

form>r+1.
p(n)

=
Since p is a polynomial of degree m — 1 and |wy|?> = p(n + 1)/p(n) for all
n > 1, Corollary [3| shows that S is strictly m-isometric. O

Remark 8. The condition m > r + 2 in the above proposition is necessary.
In fact, with an appropriate choice of ai,...,a,, there does not exist an
(r + 1)-isometric unilateral weighted shift operator whose weight sequence
starts with aq,...,a,. For example, set s = 1 and take |a;| < 1. Example
shows that there does not exist a 2-isometric weighted shift operator S with
Se1 = ajey since |a| < 1.

3. THE SEMIGROUP OF m-ISOMETRIC UNILATERAL WEIGHTED SHIFTS

In this section, we investigate the structure of m-isometric weighted shifts.
Let us define W to be the set of all unilateral weighted shifts that are m-
isometric for some integer m > 1. We shall see that W turns out to be
a semigroup with an identity. The multiplication on W is the Hadamard
product of operators. We shall also show that any element in W can be
factored as a product of simpler factors.

Let us first recall the Hadamard product, which is also known as the Schur
product. Suppose A and B are bounded operators on H. Let (a;;) and
(bjk), respectively, be the matrix representations of A and B with respect to
the orthonormal basis {e,}>° ;. Then the Hadamard product of A and B,
denoted by A® B, is an operator on H with matrix (c;i), where cji, = ajibjk
for all integers j, k > 1. It is well known that A ® B is a bounded operator
on H.
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It is clear that the Hadamard product of any two unilateral weighted
shifts is a unilateral weighted shift. Corollary |3 tells us more.

Proposition 9. Let S and T be unilateral weighted shift operators such that
S is strictly k-isometric and T is strictly £-isometric. Then S ®T is strictly
(k + ¢ — 1)-isometric. Consequently, the following statements hold.
(i) The pair (W, ®) is a commutative semigroup with identity U, the
unweighted unilateral shift.
(ii) If S®T = U, then both S and T are isometric operators. This
shows that invertible elements in (W, ®) are exactly the isometries.

Proof. Let {s,}n>1 and {t, },>1 be the weight sequences of S and T', respec-
tively. Then S ® T is a unilateral weighted shift with weights w,, = s,t,, for
n > 1.

Since S is k-isometric, Corollary [8|shows the existence of a polynomial p of
degree k—1 with real coefficients such that p(n) > 0 and |s,,|?> = p(n+1)/p(n)
for all n > 1. Similarly, there is a polynomial ¢ of degree £ — 1 such that
q(n) >0 and |t,|?> = q(n +1)/q(n) for alln > 1. Put h =p-q. Then h is a
polynomial with degree k + ¢ — 2 and for any n > 1,
h(n+1)

h(n)

By Corollary |3 again, S ® T' is strictly (k + ¢ — 1)-isometric. Therefore, W
is closed under ® and hence, (W, ®) is a semigroup. It is clear that the
unweighted unilateral shift U is the identity of this semigroup.

If S©T = U, then since U is isometric, we have k+£¢—1 = 1. This forces

k = ¢ = 1, which means that both S and T are isometric operators. The
proof of the proposition is now completed. O

h(n) =p(n)q(n) >0, and |wy|? = |sn|*|tn]” =

In general, the operator A ® B is usually not m-isometric when A is an
arbitrary k-isometry and B is an arbitrary ¢-isometry. An obvious example
is A = I, the identity operator, and B any {-isometry whose matrix contains
at least one zero on its main diagonal. Then A ® B is a diagonal operator
with at least one zero on its diagonal. Since A ® B is not injective, it cannot
be m-isometric for any m > 1. This shows that the property in Proposition
[ is quite special for m-isometric unilateral weighted shifts. On the other
hand, we would like to explain here that a more general approach can be
used to prove Proposition [ without the need of an explicit characterization.
Recall that the tensor product space HRH admits the orthonormal basis
{ej Qe :j k> 1}. The “diagonal subspace” H is a subspace of HRQH
with the orthonormal basis {e; ® e; : 7 > 1}. It is well known that A® B is
unitarily equivalent to the compression of the tensor product A ® B on H.
Duggal [11] shows that if A is k-isometric and B is ¢-isometric, then A ® B
is m-isometric on H®H with m = k + ¢ — 1. Since the compression of an
m-isometric operator on a subspace may not be m-isometric, the operator
A ® B may not be m-isometric as we have seen above. However, if both A
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and B are unilateral weighted shifts, then H turns out to be an invariant
subspace of A® B. It then follows that A ® B, being unitarily equivalent to
the restriction of A ® B on an invariant subspace, is m-isometric as well.

As another interesting application of Theorem [T} we show that any ele-
ment in the semigroup (W, ®) can be written as a product of elements that
are 2-isometric or 3-isometric.

Recall that Z* denotes the set of all positive integers. We need the
following elementary facts about polynomials with real coefficients.

Lemma 10. Let p € R[z]| be a monic polynomial such that p(n) > 0 for all
n € Z*. Then the following statements hold.

(1) Given any integer n € Z*, the polynomial p has an even number of
roots (counted with multiplicity) in the interval (n,n + 1).

(2) There are linear and quadratic monic polynomials p1, ..., p, in R[x]
which assumes positive values on 7 such that p = p1---pu.

Proof. (1) Let n be a positive integer such that p has at least a root in the
interval (n,n + 1). Let ai,...,ap be these roots, listed with multiplicity.
Write p(z) = (v — a1) -+ - (x — ag)r(x), where the polynomial r(z) has no
roots in (n,n + 1). Since r(n + 1) and r(n) have the same sign, we see that
sgn(p(n + 1)) = (=1)’sgn(p(n)). But p(n + 1) and p(n) are both positive,
so £ must be even.

(2) We know that p can be factored as a product of monic linear and irre-
ducible quadratic (not necessarily distinct) polynomials in R[z]. The proof
of the statement is completed once we notice the following facts. Firstly,
any monic irreducible quadratic factor is positive over R, hence over Z*.
Secondly, any linear factor of the form g(x) = = — b with b < 1 has positive
values over [1,00), hence over Z1 as well. Lastly, by (1), the remaining
linear factors can be grouped into pairs of the form (z — «)(z — [3), where
« and § lie between two consecutive positive integers. Any such quadratic
polynomial also assumes positive values on Z™. [l

We are now in a position to prove a factorization theorem for non-isometric
elements of (W, ®).

Theorem 11. Any non-isometric element in (W, ®) is a ®-product of ele-
ments that are either strictly 2-isometric or strictly 3-isometric.

Proof. Let S be a non-isometric element in (W, ®). Assume that S is strictly
m isometric with m > 2. By Theorem |1}, there is a monic polynomial p such
that p(n) > 0 and |w,|? = p(n+1)/p(n) for all integers n > 1. Using Lemma
we obtain a factorization p = p; - - - p,, where each polynomial p; is either
linear or quadratic. Now for each integer n > 1, set 7, = wy,/|w,| and write

_ _ pi(n+1) pu(n+1)
p1(n) pu(n)
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Let S be the unilateral weighted shift operator whose weight sequence is
{n/P1(n +1)/p1(n)}n>1. For 2 < j < v, let S; be the unilateral weighted
shift operator whose weight sequence is {1/p;j(n+ 1)/p;(n)}n>1. We then
have S = 51 ®---© S, and each S; is either strictly 2-isometric or strictly
3-isometric by Corollary [3] This completes the proof of the theorem. O

Remark 12. It should be noted that any strictly 2-isometric element in
(W, ®) cannot be trivially written as a product of non-isometric elements.
On the other hand, some strictly 3-isometric elements may be written as
a product of strict 2-isometries. These elements arise from Case (3) in
Example

We close this section with a corollary to Theorem

Corollary 13. Let S be a unilateral weighted shift operator. Then S is m-
isometric for some m > 2 if and only if it can be written as the Hadamard
product of unilateral weighted shift operators each of which is strictly 2-
1sometric or 3-isometric.

4. UNILATERAL SHIFTS WHOSE POWERS ARE m-ISOMETRIC

Let a > 2 be a positive integer. It is well known that if A is an m-isometry
then A% is an m-isometry as well. The converse, on the other hand, does
not hold (see |7, Examples 3.3 and 3.5] and also Examples [15| and [16] that
we shall discuss below).

In this section, we would like to characterize the weights of a given unilat-
eral weighted shift .S such that S is m-isometric. Our approach relies on the
characterization of m-isometric unilateral weighted shifts obtained in Sec-
tion [2l Let S be a unilateral weighted shift with weight sequence {wy, }n>1.
Recall that {ej}n>1 is an orthonormal basis of H such that Se,, = wpent1
for all n > 1. Then S is a shift of multiplicity «, that is, for all integers
n =1,

S%, = Un€n+a;
where u, = Wy - Wnta—1-

For each 1 < 7 < «, let &, denote the closed subspace spanned by
{€r, erta,€rt2a,---}. Then &, is a reducing subspace of S* and S is unitar-
ily equivalent to the direct sum 71 @®- - - & T, where each T, = S|y, is a uni-
lateral weighted shift with weight sequence {usq4r}r>0. Consequently, S
is m-isometric on H if and only if T;. is m-isometric on X, for all 1 < r < a.
By Theorem [1] this is equivalent to the existence of polynomials fi,..., fa
of degree at most m — 1 such that f,.(¢) > 0 and

41
[Upair| = Sl +1) forall />0and 1 <r <oa. (4.1)
fr(0)
Note that S% is a strict m-isometry if and only if one of the polynomials
fi,--., fa has degree exactly m — 1. With the above characterization, we

would like to recover a formula for determining the weights {wy }n>1 of S.
The following theorem is our main result in this section.
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Theorem 14. Let S be a unilateral weighted shift with weight sequence

{wp}n>1. Then S is m-isometric if and only if there exists a function

g : Zy — Ry such that the following conditions hold

(a) For each 1 < r < «, the function ¢ — g(la+1) is a polynomial of degree
at most m — 1 in £.

e have |w 22@
(5) We have a2 = ©0 0

Proof. Suppose first that S¢ is m-isometric. Then we have (4.1). We define
a function g : Z4 — R<g by

for all integer n > 1.

f(n) = fr(€)7

where ¢ and r are unique integer values satisfying 1 < r < o, £ > 0 and
n = fa + r. Equation (4.1]) can be written as

’2:fr(€+1) f(n_’—a).

‘UNP = |ugatr

fr(0) f(n)
Now for n > «, we have
Un—a+l  Wp—a+l1" "Wp Wy
Up—a  Wpa Wp1 Wpqa

which implies

‘wn’2 _ ’un—a+1‘2 . f(n + 1) f(n - a) f(n + 1)/f<n>

wi-al?  un—al?  fln—a+1) f(n)  fln-a+1)/f(n-a)
Consequently, if n = o+ r with 1 <r < «, then

|wa|® _ |Wn—af? o Jw,|*
fln+1)/f(n)  fln—a+1)/f(n—-a) fr+1)/f(r)
Denoting this positive common ratio by c¢,, we obtain the formula
1
lw,|? = crf(n +1) for n = b+ 1.

fn)

Since |w1|? - |wa|? = [u1]? = f(a+1)/f(1) we conclude that ci -+ -cq = 1.
Now set ¢g = 1 and define g(lav + 1) = co---cr—1f(lav + 1) for £ > 0 and
1 <r < a. It is clear that condition (a) is satisfied.

Forn=4a+r withl1 <r<a-—1and ¢ > 0, we compute

gn+1) glla+r+1) co e f(n+1) f(n+1)

= = =c = |wy|?.
g9(n) gllar+r) o cr-1f(n) f(n)
On the other hand, if n = o + a for some £ > 0, then
s t) gl +Da+l)  wfme1) _ fotd) o
g(n) g(lo+ ) o ca1f(n) % f(n) !

In the second last equality, we used the fact that c¢;---co—1 = c;l. Thus,
we have shown that condition (b) is satisfied for any positive integer n.
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Conversely, suppose there is a function g : Z; — Rs( such that both (a)
and (b) hold. Then for any integer n, condition (b) gives

For integers 1 < r § o and ¢ > 0, put fr({) = g(la + r). Then we have
|ugasr|? = fr(¢ +1)/f.(¢) and each f, is a polynomial of degree at most
m — 1 in ¢ by (a). Consequently, condition (4.1)) is satisfied and hence, S

is m-isometric. O
We now use Theorem [14] to investigate several examples.

Example 15. Define g(2¢ + 2) = g(2¢ + 1) = ¢ + 1 for all integers ¢ > 0.
Consider a unilateral weighted shift .S with weights given by

9(20+2)
gn+1) )\ g@+1)
g9(n) g(20+3
g(20+2

1 ifn=2041

= e+2

Since conditions (a) and (b) in Theorem [14] are satisfied with o = 2 and
m = 2, we conclude that S? is 2-isometric. However, S is not 2-isometric by
Theorem [11

ifn=20(+1
Wy, =

; ifn=20+2

Example 16. The above example can be generalized in the following way.
Let a > 2 and m > 2 be integers. Let p be a polynomial of degree m — 1
such that p(k) > 0 for all integers k£ > 0. Consider a unilateral weighted
shift S with weights defined by

e WD
p(f)

Here |x| denotes the greatest integer smaller than or equal to z. It can
be checked that conditions (a) and (b) in Theorem [14] are satisfied by the
function g(n) = p(|n/a]). We conclude that S is m-isometric. As before,
S is not m-isometric by Theorem

1 tn=fla+rwitho<r<aoa-—2
wy,
\/ if n="loa+ (a—1).

Example 17. We now consider [6, Example 3.5]. Let S be a unilateral

(M

6“2)2 for all integers

weighted shift with weights wopy1 = 4 and wopso =
¢ > 0. Define

(n) = (3¢+1)* if n=20+1
16304+ 1)t ifn=20+2.
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It can be checked that |w,|* = g(n + 1)/g(n) for all positive integers n and
that both g(2¢+ 1) and g(2¢+ 2) are polynomials in ¢ of degree 4. Theorem
shows that S? is a 5-isometry. (The statement that S? is a 2-isometry
in [6, Example 3.5] is in fact inaccurate.)

Using Theorem one can obtain other interesting examples. We leave
it to the interested reader.

5. M-ISOMETRIC BILATERAL WEIGHTED SHIFT OPERATORS

In this section we discuss bilateral weighted shift operators that are m-
isometric. It turns out that the characterization of m-isometric unilateral
shift operators in Theorem [I| play a crucial role.

Let us fix an orthonormal basis { f,, }nez of H indexed by the integers Z.
A bilateral weighted shift operator T is a linear operator on H such that

Tfn=wnfnr1, forneZ.

As before, the sequence {wy,}nez of complex numbers is called the weight
sequence of T'. We assume that {wy, } ez is bounded so that T" is a bounded
operator. We shall obtain a description of the weight sequence of any m-
isometric bilateral weighted shift operator.

Remark 18. We have already noticed that any m-isometry is injective and
has a closed range. Since the range of an injective bilateral weighted shift
operator is dense, it follows that any m-isometric bilateral weighted shift
operator is automatically invertible.

Our first result in this section characterizes bilateral weighted shift oper-
ators that are m-isometric.

Theorem 19. Let T be a bilateral weighted shift operator with the weight
sequence {wy}nez. Then T is an m-isometric operator if and only if there
exists a polynomial p of degree at most m — 1 such that for any integer n,
we have p(n) > 0 and
p(n+1)

p(n)
Furthermore, the degree of p must be even.

‘wn|2 =

Proof. For any positive integer £ > 0, let Hy be the closed subspace of
H that is spanned by {f,}n>_k. It is clear that {Hj},>0 is an increasing
sequence of invariant subspaces of 7' and H = U2 (Hy. Put T, = T'|p, . It
then follows from the definition of m-isometries that 1" is an m-isometry on
H if and only if T} is an m-isometry on Hj for all k. Note that each T}
is a unilateral weighted shift on Hj; with respect to the orthonormal basis
{en}n>—r. The weight sequence of T}, is {wpy }n>_k.

We first suppose that T' is m-isometric. Then each operator T} is m-
isometric on Hy. By Theorem [l there is a monic polynomial p; of degree
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at most m — 1 with real coefficients such that for all n > —k, we have
pr(n) > 0 and
pr(n+1)

pr(n)

Note that we have actually applied a version of Theorem [I| with the index n
starting from —Fk instead of 1. Since Tj|m, = Tp, the uniqueness established
in Remark 2] shows that the polynomials py are all the same. Let us call this
polynomial p. Then p is monic and for any integer n € Z, we have p(n) > 0
and |wy,|? = p(n + 1)/p(n). The positivity of p on Z shows that its degree
must be even.

Conversely, suppose p is a polynomial of degree at most m — 1 with real
coefficients such that p(n) > 0 and |w,|? = p(n + 1)/p(n) for all n € Z. By
Theorem each unilateral weighted shift operator T}, = T'| g, is m-isometric
on Hj. It follows that T is m-isometric on H. O

’wn‘g =

With the same argument as in the proof of Corollary 3| we obtain a
characterization of strict m-isometric bilateral weighted shift operator.

Corollary 20. The bilateral weighted shift operator T is strictly m-isometric
if and only if the degree of p is exactly m — 1 and m is an odd integer.

Remark 21. Corollary shows that there only exist strict m-isometric
bilateral weighted shift operators when m is odd. This fact is not surprising
since it actually follows from Remark |18/ and a general result |2, Proposition
1.23] (see also |10, Proposition A]) which asserts that if A is an invertible
k-isometry and k is even, then A is a (k — 1)-isometry.

Example 22. The operator T is a strict 3-isometry if and only if there is a
monic polynomial p of degree 2 such that p(n) > 0 and |w,|? = p(n+1)/p(n)
for all n € Z. Write p(z) = (x — a)(x — ) for some complex numbers «
and (. Since p assumes positive values on Z, one of the following two cases
must occur:

(1) Both a and S belong to C\R.
(2) There exists an integer ng such that both a and  belong to the
open interval (ng,ng + 1).
It should be noted that quadratic polynomials that give rise to 3-isometric
bilateral weighted shift operators are more restrictive than quadratic poly-
nomials that give rise to 3-isometric unilateral weighted shift operators (see

Example .

Example 23. Let ¢ > 2 be an even integer and b be a positive number.
Define p(x) = x(x+1)--- (x+¢—1)+b. Then p has degree £ and p(n) > 0
for all n € Z. Let T be a bilateral weighted shift operator with weights

p(n+1)

for n € Z.
p(n)

Wy =
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By Corollary the operator T is a strict (¢ + 1)-isometry. This example
was discussed in [10, Theorem 1].

As in the case of unilateral weighted shift operators, we also have a fac-
torization theorem for m-isometric bilateral weighted shift operators.

Theorem 24. Any bilateral weighted shift operator that is strictly m-isometric
for some odd integer m > 3 can be written as a Hadamard product of strictly
3-isometric bilateral weighted shift operators.

Proof. For any strictly m-isometric bilateral weighted shift operator, let p
be the monic polynomial given in Theorem[T9 With an argument similar to
that in the proof of Lemma@ one can factor p = p1 - - - p,, where each p; is
a monic quadratic polynomial having positive values over Z. The remaining
of the proof is now the same as the proof of Theorem O
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