
TOEPLITZ OPERATORS ON RADIALLY WEIGHTED

HARMONIC BERGMAN SPACES

TRIEU LE

Abstract. We study Toeplitz operators with uniformly continuous sym-
bols on radially weighted harmonic Bergman spaces of the unit ball in
Rn. We describe their essential spectra and establish a short exact se-
quence associated with the C∗-algebra generated by these operators.

1. Introduction

Let n ≥ 2 be a fixed integer. We write B for the open unit ball and S
for the unit sphere in Rn. The closure of B, which is the closed unit ball,
is denoted by B̄. For any x = (x1, . . . , xn) in Rn, we use |x| to denote the

Euclidean norm of x, that is, |x| = (x2
1 + · · ·+ x2

n)1/2.
Let ν be a regular Borel probability measure on B that is invariant under

the action of the group of orthogonal transformations O(n). Then there
is a regular Borel probability measure µ on the interval [0, 1) so that the
integration in polar coordinates formula∫

B
f(x)dν(x) =

∫
[0,1)

∫
S
f(rζ)dσ(ζ)dµ(r)

holds for all functions f that belong to L1(B, ν). Here σ is the unique
O(n)-invariant regular Borel probability measure on the unit sphere S. We
are interested in measures ν whose support is not entirely contained in a
compact subset of the unit ball so we will assume throughout the paper
that ν({x ∈ B : |x| ≥ r}) > 0 for all 0 < r < 1. This is equivalent to the
condition that µ([r, 1)) > 0 for all 0 < r < 1.

The harmonic Bergman space b2ν is the space of all harmonic functions
that belong also to the Hilbert space L2

ν = L2(B, ν). It follows from Poisson
integral representation of harmonic functions and the assumption about ν
that for any compact subset K of B, there is a constant CK such that

|u(x)| ≤ CK‖u‖ =
(∫

B
|u(x)|2dν(x)

)1/2
(1.1)

for all x in K and all u in b2ν . This implies that b2ν is a closed subspace of L2
ν

and that the evaluation map u 7→ u(x) is a bounded linear functional on b2ν
for each x in B. By the Riesz’s representation, there is a function Rx in b2ν
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so that u(x) = 〈u,Rx〉. The function R(y, x) := Rx(y) for x, y ∈ B is called
the reproducing kernel for b2ν .

Let Q denote the orthogonal projection from L2
ν onto b2ν . For a bounded

measurable function f on B, the Toeplitz operator Tf : b2ν → b2ν is defined
by

Tfu = QMfu = Q(fu), u ∈ b2ν .
Here Mf : L2

ν → L2
ν is the operator of multiplication by f . The function f is

called the symbol of Tf . We also define the Hankel operator Hf : b2ν → (b2ν)⊥

by

Hfu = (1−Q)Mfu = (1−Q)(fu), u ∈ b2ν .
It is immediate that ‖Tf‖ ≤ ‖f‖∞ and ‖Hf‖ ≤ ‖f‖∞.

For f, g bounded measurable functions on B, the following basic properties
are immediate from the definition of Toeplitz and Hankel operators:

Tgf − TgTf = H∗ḡHf , (1.2)

and

(Tg)
∗ = Tḡ, Taf+bg = aTf + bTg,

where a, b are complex numbers and ḡ denotes the complex conjugate of g.
If dν(x) = dV (x), where V is the normalized Lebesgue volume measure

on B, then b2ν is the usual unweighted harmonic Bergman space. See [1,
Chapter 8] for more details about this space. If dν(x) = cα(1− |x|2)αdV (x)
where −1 < α < ∞ and cα is a normalizing constant, then ν is a weighted
Lebesgue measure on B and b2ν is a weighted harmonic Bergman space.
Compactness of certain classes of Toeplitz operators on these weighted har-
monic Bergman spaces was considered by K. Stroethoff in [10]. He also
described the essential spectra of Toeplitz operators with uniformly contin-
uous symbols. He showed that if f is a continuous function on the closed
unit ball B̄, then the essential spectrum of Tf is the same as the set f(S).
This result in the setting of unweighted harmonic Bergman spaces was ob-
tained earlier by J. Miao [8]. More recently, B.R. Choe, Y.J. Lee and K.
Na [3] showed that the above essential spectral formula remains valid for
unweighted harmonic Bergman space of any bounded domain with smooth
boundary in Rn. The common approach, which was used in all of the above
papers, involved a careful estimate on the kernel function. In the case where
ν is not a weighted Lebesgue measure, it seems that similar estimates are
not available. Nevertheless, with a different approach, we still obtain the
aforementioned essential spectral formula.

Let T denote the C∗-algebra generated by all Toeplitz operators Tf , where
f belongs to the space C(B̄) of continuous functions on the closed unit
ball. Let CT denote the two-sided ideal of T generated by commutators
[Tf , Tg] = TfTg − TgTf , for f, g ∈ C(B̄). In the case n = 2 and ν the
normalized Lebesgue measure on the unit disk, K. Guo and D. Zheng [6]
proved that CT = K, the ideal of compact operators on b2ν , and there is a
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short exact sequence

0→ K → T→ C(S)→ 0.

They also proved that any Fredholm operator in the Toeplitz algebra T has
Fredholm index 0. We will show that these results are in fact valid for all
n ≥ 2.

The paper is organized as follows. In Section 2 we give some preliminaries.
We then study Toeplitz operators with uniformly continuous symbols and
establish the essential spectral formula in Section 3 . The Toeplitz algebra
and the associated short exact sequence are studied in Section 4. We close
the paper with a criterion for compactness of operators with more general
symbols in Section 5.

2. Preliminaries

It is well known that the reproducing kernel R(x, y) is symmetric and
real-valued for x, y ∈ B. From (1.1) we see that for any compact subset K
of B and x ∈ K,

R(x, x) = Rx(x) ≤ CK‖Rx‖ = CK(〈Rx, Rx〉)1/2 = CK(R(x, x))1/2. (2.1)

This shows that 0 ≤ R(x, x) ≤ C2
K for x ∈ K. So the function x 7→ K(x, x)

is bounded on compact subsets of B.
A polynomial p in the variable x with complex coefficients is homoge-

neous of degree m (or m-homogeneous), where m ≥ 0 is an integer, if
p(tx) = tmp(x) for all non-zero real numbers t. We write Pm for the vector
space of all m-homogeneous polynomials on Rn. We use Hm to denote the
subspace of Pm consisting of harmonic polynomials. The subspace Hm is
finite dimensional and its dimension hm is given by h0 = 1, h1 = n and
hm =

(
n+m−1
n−1

)
−
(
n+m−3
n−1

)
for m ≥ 2. See [1, Proposition 5.8].

For polynomials p in Hm and q in Hk, using the orthogonality of their
restrictions on the sphere [1, Proposition 5.9] and integration in polar coor-
dinates we obtain

〈p, q〉 =
(∫

[0,1)
rm+kdµ(r)

)∫
S
pq̄dσ

=

{
0 if m 6= k( ∫

[0,1) r
2mdµ(r)

) ∫
S pq̄dσ if m = k.

(2.2)

This shows that the spaces Hm for m = 0, 1, . . . are pairwise orthogonal. On
the other hand, [1, Corollary 5.34] shows that if u is a harmonic function
on the unit ball B, then there exist polynomials pm ∈ Hm such that u(x) =∑∞

m=0 pm(x) for all x in B. The series converges uniformly on compact
subsets of B. Thus we have the orthogonal decomposition b2ν = ⊕∞m=0Hm.
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We now present some other elementary results which we will use later in
the paper. The following lemmas follow from the above orthogonal decom-
position of b2ν . Since these are well known results in functional analysis, we
omit their proofs.

Lemma 2.1. Suppose A is a compact operator from b2ν into a Hilbert space
L. Then limm→∞ ‖A|Hm‖ = 0.

The converse of Lemma 2.1 is false in general. However, if additional
conditions are imposed on the images of the subspaces Hm under A, the
converse holds.

Lemma 2.2. Suppose A is an operator defined on the algebraic direct sum
of the subspaces Hm into a Hilbert space L so that A(Hm) ⊥ A(Hl) for all
m 6= l and limm→∞ ‖A|Hm‖ = 0. Then A extends (uniquely) to a compact
operator from b2ν into L.

We will also need the following lemma, which is a special case of [7, Lemma
2.4].

Lemma 2.3. Suppose ϕ is a function on [0, 1) so that limr↑1 ϕ(r) = γ, then

lim
m→∞

∫
[0,1) ϕ(r)r2mdµ(r)∫

[0,1) r
2mdµ(r)

= γ.

3. Toeplitz operators with uniformly continuous symbols

In this section we study Toeplitz operators whose symbols are continuous
on the closed unit ball. We show that the essential spectrum of such an
operator is the set of values of its symbol on the unit sphere.

For any integer k ≥ 0, we denote the 2k-th moment of µ by µ̂(k), that is,

µ̂(k) =

∫
[0,1)

r2kdµ(r) =

∫
B
|x|2kdν(x).

For any u ∈ b2ν , write u =
∑∞

m=0 um, where um ∈ Hm for m ≥ 0. We then
have

‖u‖2 =
∞∑
m=0

‖um‖2 =
∞∑
m=0

∫
B
|um(x)|2dν(x)

=

∞∑
m=0

∫
[0,1)

r2mdµ(r)

∫
S
|um(ζ)|2dσ(ζ)

=
∞∑
m=0

µ̂(m)

∫
S
|um(ζ)|2dσ(ζ).

This shows that the linear map W : b2ν −→ L2(S) defined by

W (u) =
∞∑
m=0

(µ̂(m))1/2 um|S
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is isometric.
The restriction of an element in Hm to S is called a spherical harmonic of

degree m. Theorem 5.12 in [1] shows that the span of all spherical harmonics
is dense in L2(S). We then conclude that W is a surjective isometry, hence
a unitary operator.

For a continuous function f on the closed unit ball, let f∗ denote the
restriction of f on the unit sphere. Recall that the operator Mf is the
multiplication operator on L2

ν with symbol f . As usual, we denote its re-
striction on b2ν by Mf |b2ν . We also write Mf∗ for the multiplication operator

on L2(S) with symbol f∗. Using the above unitary, we establish the following
connection between these two operators.

Theorem 3.1. Let f be in C(B̄). Then the operator

Mf |b2ν −W
∗Mf∗W : b2ν −→ L2

ν

is compact.

Proof. Let

A = {f ∈ C(B̄) : Mf |b2ν −W
∗Mf∗W is compact}.

We need to show that A = C(B̄). It is clear that A is a closed linear subspace
of C(B̄). Now suppose f, g are in A. Then there are compact operators Kf

and Kg from b2ν into L2
ν so that

Mf |b2ν = W ∗Mf∗W +Kf and Mg|b2ν = W ∗Mg∗W +Kg.

Since the range of W ∗ is b2ν , we have (I − Q)W ∗Mg∗W = 0 (we recall
here that Q is orthogonal projection from L2

ν onto b2ν). This implies that
(1−Q)Mg|b2ν = (1−Q)Kg and so we have

Mfg|b2ν = MfMg|b2ν = Mf (1−Q)Mg|b2ν +MfQMg|b2ν
= Mf (1−Q)Kg + (W ∗Mf∗W +Kf )(W ∗Mg∗W +QKg)

= W ∗Mf∗WW ∗Mg∗W +K

= W ∗M(fg)∗W +K,

where K is compact. Thus, fg ∈ A if f, g are in A. We have showed that A
is a closed subalgebra of C(B̄). To complete the proof of the theorem, we will
show that the coordinate functions x1, . . . , xn belong to A. By symmetry,
we only need to check that f(x) = x1 is in A.

For any integer m ≥ 0 and p ∈ Hm, the polynomial fp is homogeneous
of degree m + 1. Since ∆2(fp) = ∆2(x1p(x)) = 0, [1, Theorem 5.21] shows
that there is a unique decomposition

Mfp = fp = pm+1 + |x|2pm−1,

where pm+1 ∈ Hm+1 and pm−1 ∈ Hm−1 if m ≥ 1 and pm−1 = 0 if m =
0. Using integration in polar coordinates and the fact that restrictions of
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homogeneous harmonic polynomials of different degrees are orthogonal in
L2(S), we obtain

‖Mfp‖2 = ‖pm+1‖2 + ‖|x|2pm−1‖2 = ‖pm+1‖2 +
µ̂(m+ 1)

µ̂(m− 1)
‖pm−1‖2. (3.1)

On the other hand,

W ∗Mf∗W (p) = (µ̂(m))1/2W ∗Mf∗(p|S)

= (µ̂(m))1/2W ∗(fp|S)

= (µ̂(m))1/2W ∗(pm+1|S + pm−1|S)
)

=
( µ̂(m)

µ̂(m+ 1)

)1/2
pm+1 +

( µ̂(m)

µ̂(m− 1)

)1/2
pm−1.

Therefore,

(Mf |b2ν −W
∗Mf∗W )(p) (3.2)

=
{

1−
( µ̂(m)

µ̂(m+ 1)

)1/2}
pm+1 +

(
|x|2 −

( µ̂(m)

µ̂(m− 1)

)1/2)
pm−1.

Now we define

A1(p) =
{

1−
( µ̂(m)

µ̂(m+ 1)

)1/2}
pm+1, and

A2(p) =
{
|x|2 −

( µ̂(m)

µ̂(m− 1)

)1/2}
pm−1,

for p ∈ Hm and extend A1 and A2 by linearity to the algebraic direct sum of
the spacesHm, m = 0, 1 . . .. Using (3.1) and integration in polar coordinates
together with the fact that ‖Mfp‖ ≤ ‖f‖∞‖p‖ = ‖p‖ (recall that f(x) = x1),
we obtain

‖A1(p)‖ =
∣∣∣1− ( µ̂(m)

µ̂(m+ 1)

)1/2∣∣∣‖pm+1‖ ≤
{( µ̂(m)

µ̂(m+ 1)

)1/2
− 1
}
‖p‖,

‖A2(p)‖2

=

∫
[0,1)

(
r2 −

( µ̂(m)

µ̂(m− 1)

)1/2)2
r2m−2dr

∫
S
|pm−1(ζ)|2dσ(ζ)

=
{
µ̂(m+ 1) + µ̂(m)− 2µ̂(m)

( µ̂(m)

µ̂(m− 1)

)1/2}(
µ̂(m− 1)

)−1‖pm−1‖2

≤
{
µ̂(m+ 1) + µ̂(m)− 2µ̂(m)

( µ̂(m)

µ̂(m− 1)

)1/2}(
µ̂(m+ 1)

)−1‖p‖2.

From Lemma 2.3 we have limm→∞ ‖Aj |Hm‖ = 0 for j = 1, 2. On the
other hand, by the orthogonality of homogeneous harmonic polynomials of
different degrees when restricted to the sphere, we see that Aj(Hm)⊥Aj(Hk)
if m 6= k for j = 1, 2. Lemma 2.2 now shows that A1 and A2 extend to
compact operators on b2ν . From (3.2), Mf |b2ν −W

∗Mf∗W , being a sum of
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two compact operators, is also compact. This completes the proof of the
theorem. �

Theorem 3.1 has important consequences that we now describe. Since the
image of W ∗ is contained in b2ν , we have QW ∗ = W ∗ and (1 − Q)W ∗ = 0.
Theorem 3.1 implies that the Toeplitz operator Tf = QMf |b2ν is a compact
perturbation of W ∗Mf∗W and the Hankel operator Hf = (1 − Q)Mf |b2ν is

compact for any f in C(B̄). Now for any bounded measurable function g on
B, (1.2) shows that both operators Tgf −TgTf and Tgf −TfTg are compact.

Let us write B(b2ν) for the C∗-algebra of all bounded operators on b2ν .
Let K denote the ideal of all compact operators on b2ν . For any bounded
operator A, recall that the essential spectrum of A, denoted by σe(A), is
the spectrum of A+K in the quotient algebra B(b2ν)/K. The essential norm
‖A‖e is the norm of A+K in B(b2ν)/K.

If f∗ is the restriction of f on the unit sphere S, then σe(Mf∗) = f∗(S) =
f(S) and ‖Mf∗‖e = sup{|f∗(ζ)| : ζ ∈ S} = sup{|f(ζ)| : ζ ∈ S}. Theorem 3.1
now implies the following results, which were obtained earlier by Stroethoff
[9, 10] for weighted spaces with a different approach.

Corollary 3.2. Let f be a uniformly continuous function and g be a bounded
measurable function on B. Then Tgf − TgTf and Tgf − TfTg are compact
operators, σe(Tf ) = f(S) and ‖Tf‖e = sup{|f(ζ)| : ζ ∈ S}. In particular, Tf
is compact if and only if f vanishes on S.

4. The Toeplitz Algebra

We now turn our attention to the C∗-algebra T generated by all Toeplitz
operators Tf , where f belongs to C(B̄). Our main result in this section is
a description of this algebra as an extension of the compact operators K by
continuous functions on the unit sphere. We begin by exhibiting a class of
block diagonal operators in T.

A function f on the unit ball is called radial if there is a function ϕ
defined on the interval [0, 1) so that f(x) = ϕ(|x|) for ν-almost every x in B.
The following lemma, which is Lemma 4.2 in [10] in the case ν a weighted
Lebesgue measure, shows that each Hm,m = 0, 1, . . . is an eigenspace for
Tf . For completeness we include here a proof.

Lemma 4.1. If f is a bounded radial function on B, then each non-zero
homogeneous harmonic polynomial of degree m ≥ 0 is an eigenvector of Tf
with eigenvalue given by

λm =

∫
[0,1) ϕ(r)r2mdµ(r)∫

[0,1) r
2mdµ(r)

,

where ϕ is a bounded function on the interval [0, 1) so that f(x) = ϕ(|x|)
for ν-almost every x ∈ B.
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Proof. For any homogeneous harmonic polynomials p of degree m and q of
degree k, using (2.2) we have

〈Tfp, q〉 = 〈fp, q〉 =

∫
[0,1)

∫
S
f(rζ)p(rζ)q̄(rζ)dσ(ζ)dµ(r)

=
(∫

[0,1)
ϕ(r)rm+kdµ(r)

)∫
S
pq̄dσ

=

{
0 if m 6= k,( ∫

[0,1) ϕ(r)r2mdµ(r)
) ∫

S pq̄dσ if m = k

= λm〈p, q〉.

Since the span of homogeneous harmonic polynomials is dense in b2ν , we
conclude that Tfp = λmp for any p in Hm. �

Let η(x) = |x|2 for x in B. From the lemma, each subspace Hm is an

eigenspace for Tη with corresponding eigenvalue γm =

∫
[0,1) r

2m+2dµ(r)∫
[0,1) r

2mdµ(r)
.

We show that these eigenvalues form a strictly increasing sequence. In par-
ticular, they are pairwise distinct.

Lemma 4.2. For any integer m ≥ 0 we have∫
[0,1) r

2m+2dµ(r)∫
[0,1) r

2mdµ(r)
<

∫
[0,1) r

2(m+1)+2dµ(r)∫
[0,1) r

2(m+1)dµ(r)
.

Proof. Let a(r) = rm and b(r) = rm+2 for 0 ≤ r < 1. Cauchy-Schwarz’s
inequality gives(∫

a(r)b(r)dµ(r)
)2
≤
(∫

[0,1)
a2(r)dµ(r)

)(∫
[0,1)

b2(r)dµ(r)
)
,

which is almost the same as the required inequality. We need to show
why the equality cannot occur. This is indeed the case because the ratio
b(r)/a(r) = r2 is not a constant function µ-almost everywhere on (0, 1). �

We are now ready for the description of T, which is the main result in
this section.

Theorem 4.3. The following statements hold.
(1) The commutator ideal CT of T is the same as the ideal K of compact

operators on b2ν .
(2) Any element of T has the form Tf +K for some f in C(B̄) and K ∈ K

and there is a short exact sequence

0→ K → T→ C(S)→ 0.

Furthermore, the sequence is split. In Brown-Douglas-Fillmore(BDF)-theory,
it means that the extension is trivial. As a result, all Fredholm operators in
T have index zero.
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Guo and Zheng [6] proved Theorem 4.3 for the case n = 2 and ν the
normalized Lebesgue measure.

When n is an even number and ν is the normalized Lebesgue measure,
Theorem 4.3 was proved by L. Coburn [4] for Toeplitz operators on the
holomorphic Bergman space. The proof of (1) uses similar ideas as in the
proof of [4, Theorem 1]. The difficulty is that the product of two harmonic
functions is, in generally, no longer harmonic. The proof of (2) relies heavily
on Theorem 3.1.

Proof. We first show that T is irreducible on b2ν . Suppose A is an operator on
b2ν that commutes with all elements of T. Then in particular, A commutes
with Tη. For any homogeneous polynomials p of degree m and q of degree
k, we have

〈ATηp, q〉 = γm〈Ap, q〉,
〈TηAp, q〉 = 〈Ap, Tη̄q〉 = 〈Ap, Tηq〉 = γk〈Ap, q〉.

Since ATη = TηA and γm 6= γk if m 6= k, we conclude that 〈Ap, q〉 = 0
if m 6= k. This implies that each subspace Hm is invariant, hence also
reducing for A. In particular, H0 reduces A. But H0 is a one-dimensional
space spanned by the constant function e0(x) = 1, so we have Ae0 = λe0 for
some scalar λ.

For each harmonic polynomial p, we have

A(p) = ATp(e0) = TpA(e0) = λTp(e0) = λp.

Since the space of harmonic polynomials is dense in b2ν , we conclude that
A = λIb2ν . Thus T is irreducible. Now Corollary 3.2 shows that T contains
a non-zero compact operator (for example T1−|x|2). It then follows from a
well known result in C∗-algebras [5, Theorem 5.39] that T contains the ideal
K of compact operators. Therefore the commutator ideal CT contains the
commutator ideal of K, which is the same as K.

On the other hand, for any functions f, g in C(B̄), the commutator TfTg−
TgTf = (TfTg−Tfg)− (TgTf −Tfg) is compact by Corollary 3.2 again. This
implies the inclusion CT ⊆ K, which completes the proof of statement(1).

For the proof of (2), consider the ∗-homomorphism ρ : g 7→ W ∗MgW
from C(S) into the algebra T. By Theorem 3.1, W ∗MgW = Tf +K, where
K is a compact operator and f is any function in C(B̄) with f |S = g, we see
that ρ(g) indeed belongs to T.

Let π : T −→ T/K be the quotient map. Then Φ = π ◦ ρ is a ∗-
homomorphism from C(S) into T/K. Since W ∗MgW is compact on b2ν if
and only if Mg is compact on L2(S) if and only if g ≡ 0, we see that Φ is
an injective ∗-homomorphism. By a well known result from the theory of
C∗-algebras, the image of Φ is a closed C∗-subalgebra of T/K. On the other
hand, for any f ∈ C(B̄), we have Tf + K = W ∗Mf |SW + K = Φ(f |S). It
then follows, from the definition of T, that the range of Φ is dense. Hence,
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Φ : C(S) −→ T/K is a ∗-isomomorphism and we have

T = {W ∗MgW + K̃ : g ∈ C(S), K̃ ∈ K} = {Tf +K : f ∈ C(B̄), K ∈ K}.

It also follows that the sequence

0→ K ι−−−−→ T
δ−−−−→ C(S) −→ 0

is exact, where ι is the inclusion map and δ = Φ−1 ◦ π. Since π ◦ ρ = Φ,
we have δ ◦ ρ = (Φ−1 ◦ π) ◦ ρ = 1C(S), which implies that the short exact
sequence is split.

The conclusion about Fredholm index is a consequence of the triviality of
the extension. Since we have not found an appropriate reference, we sketch
here a proof. Let A ∈ T be a Fredholm operator. Then π(A) is invertible
in T/K. This implies that ρ ◦ δ(A) = ρ ◦ Φ−1(π(A)) is invertible in T and
hence, has zero index. On the other hand, since δ(A − ρ ◦ δ(A)) = δ(A) −
δ(ρ(δ(A))) = 0, there is a compact operator K such that A = ρ ◦ δ(A) +K.
We then conclude that ind(A) = ind(ρ ◦ δ(A)) = 0 because the Fredholm
index is invariant under compact perturbation. �

5. Toeplitz Operators with General Symbols

In this section we consider Toeplitz operators with more general symbols.
We present some necessary conditions for the compactness of Tf , where f
is assumed to be bounded. As a result, we show that if f is a bounded
harmonic function on B and Tf is compact, then f is the zero function.

We begin with a well known result that Toeplitz operators whose symbols
have zero limit at the boundary of the unit ball are compact. The proof is
based on the boundedness of kernel functions on compact subsets.

Proposition 5.1. If f is a bounded (not necessarily continuous) function
on B so that lim|x|↑1 f(x) = 0, then Mf |b2ν is compact. As a consequence,

the Toeplitz operator Tf is compact on b2ν .

Proof. For any 0 < r < 1, let Br = {x ∈ R2 : |x| ≤ r} and let fr = fχBr .
It follows from the hypothesis that ‖f − fr‖∞ → 0 as r ↑ 1. Therefore,
‖Mf −Mfr‖ → 0 as r ↑ 1.

We now show that Mfr is a Hilbert-Schmidt operator on b2ν for 0 < r < 1.
Let e0, e1, . . . be an orthonormal basis for b2ν . We have

∞∑
j=0

‖Mfrej‖2 =
∞∑
j=0

∫
B
|fr(x)|2|ej(x)|2dν(x)

=

∫
B
|fr(x)|2

∞∑
j=0

|ej(x)|2dν(x) (5.1)

=

∫
Br
|f(x)|2R(x, x)dν(x).
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The last equality follows from the well known formula for the reproducing
kernel function:

R(x, x) = ‖Rx‖2 =

∞∑
j=0

|〈Rx, ej〉|2 =

∞∑
j=0

|ej(x)|2.

Since R(x, x) is bounded for x in Br by (2.1), the last integral in (5.1) is
finite. This shows that the operator Mfr |b2ν is a Hilbert-Schmidt operator on

b2ν . Therefore, Mf |b2ν , which is the norm limit of a net of compact operators,
is compact. Since Tf = PMf |b2ν , Tf is also compact. �

The following proposition offers a necessary condition for a Toeplitz op-
erator to be compact.

Proposition 5.2. For each integer m ≥ 0, let ϕm be a positive function

of the form ϕm(x) =
∑sm

j=1 |a
(m)
j (x)|2, where sm is a positive integer and

a
(m)
j ∈ Hm for 1 ≤ j ≤ sm. Suppose f is a bounded function on B so that

Tf is a compact operator on b2ν . Then we have

lim
m→∞

∫
B f(x)ϕm(x)dν(x)∫

B ϕm(x)dν(x)
= 0. (5.2)

In particular,

lim
m→∞

∫
[0,1)

( ∫
S f(rζ)dσ(ζ)

)
r2mdµ(r)∫

[0,1) r
2mdµ(r)

= 0. (5.3)

Proof. Let ε > 0 be given. By Lemma 2.1, there is an integer mε > 0 so that
for all integers m ≥ mε and p ∈ Hm, we have ‖Tfp‖ ≤ ε‖p‖. In particular,

‖Tfa
(m)
j ‖ ≤ ε‖a

(m)
j ‖ for 1 ≤ j ≤ sm for each such m. Now,∣∣∣ ∫

B
f(x)ϕm(x)dν(x)

∣∣∣ =
∣∣∣ sm∑
j=1

∫
B
f(x)a

(m)
j (x)ā

(m)
j (x)dν(x)

∣∣∣
=
∣∣∣ sm∑
j=1

〈Tfa
(m)
j , a

(m)
j 〉

∣∣∣
≤

sm∑
j=1

‖Tfa
(m)
j ‖‖a

(m)
j ‖

≤
sm∑
j=1

ε‖a(m)
j ‖

2 = ε

∫
B
ϕm(x)dν(x).

Therefore,
|
∫
B f(x)ϕm(x)dν(x)|∫

B ϕm(x)dν(x)
≤ ε

for all m ≥ mε and hence (5.2) follows.
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Let e
(m)
1 , . . . , e

(m)
hm

be an orthonormal basis for Hm and define

Km(x, y) =

hm∑
j=1

e
(m)
j (x)ē

(m)
j (y)

for x, y ∈ B. It can be showed that Km is the reproducing kernel function for
Hm and since Hm is invariant under the action of the group of orthogonal
transformations O(n), Km(Ty, x) = Km(y, T−1x) for all T ∈ O(n) and all
x, y in B. The proof of these assertions is the same as the proof of [1,
Proposition 5.27].

For x ∈ B and T ∈ O(n), we have Km(Tx, Tx) = Km(x, x). This implies
that Km(x, x) = dm|x|2m for some constant dm, which shows that |x|2m =

d−1
m

∑hm
j=1 |e

(m)
j (x)|2. By choosing ϕm(x) = |x|2m and using integration in

polar coordinates, we obtain∫
B
f(x)ϕm(x)dν(x) =

∫
B
f(x)|x|2mdν(x) =

∫
[0,1)

(∫
S
f(rζ)dσ(ζ)

)
r2mdµ(r),∫

B
ϕm(x)dν(x) =

∫
B
|x|2mdν(x) =

∫
[0,1)

r2mdµ(x).

The limit (5.3) now follows from (5.2). �

Theorem 5.3. Suppose f is a bounded function on B so that the radial limit
f∗(ζ) = limr↑1 f(rζ) exists for σ-almost every ζ on S. If Tf is a compact
operator on b2ν , then f∗(ζ) = 0 for σ-almost every ζ ∈ S.

Proof. For any multi-index α = (α1, . . . , αn) ∈ Nn0 , the compactness of Tf
together with Corollary 3.2 shows that Tf(x)xα is a compact operator (here
xα = xα1

1 · · ·xαnn ). By Proposition 5.2, we have

lim
m→∞

∫
[0,1)

( ∫
S f(rζ)rα1+···+αnζαdσ(ζ)

)
r2mdµ(r)∫

[0,1) r
2mdµ(r)

= 0.

On the other hand, the hypothesis of the theorem together with the Domi-
nated Convergence Theorem gives

lim
r↑1

∫
S
f(rζ)rα1+···+αnζαdσ(ζ) =

∫
S
f∗(ζ)ζαdσ(ζ).

It now follows from Lemma 2.3 that
∫
S f∗(ζ)ζαdσ(ζ) = 0. Since this holds

for any multi-index α, we conclude that f∗(ζ) = 0 for σ-almost every ζ in
S. �

We say that a bounded function f defined on B has a uniform radial limit
if there exists a function f∗ on S such that

lim
r↑1

(
sup{|f(rζ)− f∗(ζ)| : ζ ∈ S}

)
= 0.

The function f∗ will be called the uniform radial limit of f . It is clear that
any function f in C(B̄) has a uniform radial limit, namely f |S.
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On the other hand, if f∗ is a bounded function on S and we define

ϕ(x) =

{
|x|f∗( x

|x|) if 0 < |x| ≤ 1,

0 if x = 0,
(5.4)

then it can be checked that f∗ is the uniform radial limit of ϕ. Moreover, if
f∗ is continuous on S, then ϕ is continuous on B̄.

Using Proposition 5.1 we extend Corollary 3.2 to functions with continu-
ous uniform radial limits.

Corollary 5.4. Let f be a bounded function on B with uniform radial limit
f∗ on S. Assume that f∗ is continuous on S. Let g be a bounded function on
B. Then Tgf − TgTf and Tgf − TfTg are compact operators, σe(Tf ) = f∗(S)
and ‖Tf‖e = sup{|f∗(ζ)| : ζ ∈ S}. In particular, Tf is compact if and only
if f∗ vanishes on S.

Proof. Let ϕ be defined as in (5.4). Then ϕ belongs to C(B̄) and we have
lim|x|↑1 |f(x)−ϕ(x)| = 0. Proposition 5.1 shows that Tf −Tϕ and Tgf −Tgϕ
are compact. The conclusions now follow from Corollary 3.2, which says
Tgϕ − TgTϕ and Tgϕ − TϕTg are compact operators, σe(Tϕ) = ϕ(S) = f∗(S)
and ‖Tϕ‖e = sup{|ϕ(ζ)| : ζ ∈ S} = sup{|f∗(ζ)| : ζ ∈ S}. �

For functions whose uniform radial limits may not be continuous, we are
unable to decide the validity of all conclusions in Corollary 5.4 but we do
obtain a characterization for compactness.

Corollary 5.5. Suppose f is a bounded function on B with uniform radial
limit f∗ on S. Then Tf is compact if and only if f∗(ζ) = 0 for σ-almost
every ζ in S.

Proof. The “if” part follows from Proposition 5.1 and the “only if” part
follows from Theorem 5.3. �

Our last result in the paper is the fact that there is no non-zero compact
Toeplitz operator with harmonic symbol. This was proved earlier by Choe,
Koo and Na in [2] with a different approach for the case ν the normalized
Lebesgue measure.

Corollary 5.6. Suppose f is a bounded harmonic function on B so that Tf
is a compact operator on b2ν , then f(x) = 0 for all x ∈ B.

Proof. It is well known (see [1, Theorems 6.13 and 6.39]) that the radial limit
f∗(ζ) = limr↑1 f(rζ) exists for σ-almost every ζ on S and f is the Poisson
integral of f∗. Since Tf is assumed to be compact, Theorem 5.3 shows that
f∗(ζ) = 0 for σ-almost every ζ in S. Thus f(x) = 0 for all x in B. �

Acknowledgements. The author wishes to thank the referee for valu-
able suggestions that improved the presentation of the paper.
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