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1 A Very Short Introduction to Toric Varieties

The theory of toric varieties was introduced in the early 1970s and since that time

has progressed far; today it is still active, providing a basis for fresh ideas. Toric varieties

give rise to interesting applications with their rich structure and relatively easy combi-

natorics. However, toric varieties are normal, rational, and not necessarily projective,

which makes them good candidates for examples or counter-examples in a wider class of

varieties. Examples of their benefits are:

- Toric varieties are trivial from the minimal model theory point of view; however, they

offer an excellent means to explain its main ideas.

- Fano toric varieties are easier to handle, but they are still an interesting subclass of

Fano varieties.

- A pair of mirror Calabi-Yau threefolds can be constructed using “reflexive” polytopes.

- Other benefits are related to combinatorial geometry, error-correcting codes, Gromov-

Witten invariants, Lagrangian torus fibrations, symplectic geometry, etc.
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1.1 Affine Toric Varieties

Affine toric varieties play basically the same role for toric varieties as open subsets of

Cn (or Rn) for analytic (real) varieties. An affine toric variety can be associated with a

cone.

1.1.1. Lattices and Cones. Consider an r-dimensional lattice N that can

be identified with Zr, and let M = HomZ(N,Z) be its dual lattice. We can define scalar

extensions of N and M as: NR = N ⊗R R and MR = M ⊗R R. Figure 1.1 shows an

example of a cone. Now, the definition of a cone can be provided.

Figure 1.1: The cone σ = (2e1 + e2)R≥0 + (e1 + 3e2)R≥0 ⊂ R2
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Definition 1.1.1 (Rational polyhedral cones) A subset σ ⊂ NR is a rational polyhe-

dral cone with apex at the origin 0 if there are a1, ..., as ∈ N such that

σ = a1R≥0 + ... + asR≥0 = {a1t1 + ... + asts : ∀1≤j≤s tj ∈ R≥0},

where R≥0 is a set of nonnegative real numbers. A cone σ is strictly convex if it is convex

as a subset of NR and does not contain a straight line.

If a point p ∈ σ has a representation p = a1t1 + . . .+ asts and all tj > 0, for 1 ≤ j ≤ s,

then p belongs to the relative interior of σ.

In further discussions, except where clarification is needed, we will refer to

strictly convex rational polyhedral cones simply as cones. It is important to imagine how

cones look. The origin {0} ⊂ NR is a cone. It can be represented as σ = 0R≥0 and in

further discussion the cone 0R≥0 will be denoted as 0. Since the lattice M is dual to N ,

there is a dual product denoted as (, ) : N ×M −→ Z.

3



Definition 1.1.2 (Dual cones) For any cone σ ⊂ NR, we can define its dual cone as

σ∨ ⊂ MR: σ∨ = {u ∈ MR : ∀v∈σ (v, u) ≥ 0}.

Figure 1.2 shows an example of a cone and its dual.

Figure 1.2: A cone and its dual

Example 1.1.1 Consider the cone σ = (2e1 + e2)R≥0 + (e1 + 3e2)R≥0 ⊂ R2. Then its

dual is σ∨ = (3e∗1 − e∗2)R≥0 + (−e∗1 + 2e∗2)R≥0 ⊂ R2.

Notice that if σ ⊂ NR is a strictly convex rational polyhedral cone with apex at

the origin then σ∨ ⊂ MR is a rational polyhedral cone with apex at the origin, but it is

not necessarily strictly convex. As an example, consider the zero cone 0 ⊂ NR. Then

(0)∨ = {u ∈ MR : ∀v∈0 (v, u) ≥ 0} = {u ∈ MR : (u, 0) ≥ 0} = MR.
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1.1.2. Semigroups and Gordan’s Lemma. The dual cone σ∨ allows us to

define a semigroup Sσ = σ∨ ∩ M associated with cone σ. The semigroup Sσ is, in fact,

finitely generated, which is a key condition in the theory of toric varieties. Consider the

following lemma:

Lemma 1.1.1 (Gordan’s lemma) ([1], Lec. 1, Prop. 5.4) If σ is a rational polyhedral

cone, then Sσ is a finitely generated additive semigroup, i.e., there exists m1, . . . ,mt ∈ Sσ

so that

Sσ = m1Z≥0 + . . . + mtZ≥0.

Figure 1.3 shows the generators of the semigroup.

Figure 1.3: The semigroup and its generators
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1.1.3. Semigroup Algebras and Toric Ideals. Any finitely generated semi-

group Sσ defines C-algebra C[Sσ] as follows. With an element u ∈ Sσ we associate an

element χu ∈ C[Sσ], which we call a character. If u = u1e
∗
1 + . . .+une

∗
n, and if (t1, . . . , tn)

are local coordinates, then

χu(t1, . . . , tn) = tu1
1 . . . tun

n

The algebra C[Sσ] is generated by characters {χui
}i∈I , where {ui}i∈I are generators of Sσ.

Any element of C[Sσ] is a finite linear combination of the form
∑

i∈I niχui
, where ni ∈ C.

Notice that for any u1, u2 ∈ Sσ, we have χu1 ·χu2 = χu1+u2 . The following examples show

some important cones and their algebras.

Example 1.1.2 Consider 0 ∈ NR, where dimNR = n. Then 0∨ = {u ∈ MR : (u, 0) ≥

0} = MR, so S0 = M and C[S0] = C[M ] = C[Zn] = C[z1 , . . . , zn,
1

z1...zn
]. Notice that the

algebra C[Zn] can be equivalently written as C[z1 , . . . , zn,
1
z1
, . . . , 1

zn
], which depends on a

choice of generators of Zn.

Example 1.1.3 For σ = R≥0 ⊂ R, we have σ∨ = R≥0 and C[Sσ] = C[N] = C[z]. For

σ = e1R≥0+ . . . + enR≥0 ⊂ Rn, we have σ∨ = e1R≥0+ . . . + enR≥0 ⊂ Rn (where e1 , . . . , en

is a standard basis of Rn) and C[Sσ] = C[Nn] = C[z1 , . . . , zn].
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With any algebra C[Sσ] defined by a cone (or with any cone σ ⊂ N = Zn), we can

associate a toric ideal Iσ. As noted above, C[Sσ] is generated by characters {χui}i∈I , where

{ui}i∈I are generators of Sσ. Therefore, the ideal Iσ expresses relations between generators

of C[Sσ]. Notice that linear relations between elements from Sσ:
∑

aiui =
∑

bjuj, where

ai, bj ∈ Z>0, turn into multiplicative relations between elements of C[Sσ]:
∏

χai
ui

=
∏

χ
bj
uj .

On the other hand, a toric ideal Iσ is a kernel of the homomorphism C[Nk] → C[Sσ],

where k is a number of generators of Sσ. The next example shows how to obtain Iσ as a

kernel and specifically, how to obtain it from linear relations, which are, in fact, the same

thing.

Example 1.1.4 Let σ∨ = (3e1 − 1e2)R≥0 + (−1e1 + 2e2)R≥0 ⊂ R2. Then C[Sσ] =

C[x, y, x
3

y
, y

2

x
], and the kernel of the homomorphism C[a, b, c, d]

ϕ→ C[x, y, x
3

y
, y

2

x
], which

sends a 7→ x, b 7→ y, c 7→ x3

y
, d 7→ y2

x
, is generated by cb − a3 and da − b2. Thus

Iσ = (cb − a3, da − b2). For linear relations from Sσ, its generators can be chosen as:

e∗1, e
∗
2, 3e

∗
1 − e∗2,−e∗1 + 2e∗2 with relations: (3e∗1 − e∗2) + e∗2 = 3e∗1 and (−e∗1 + 2e∗2) + e∗1 = 2e∗2.

Using notation χe∗1
= a, χe∗2

= b, χ3e∗1−e∗2
= c, χ−e∗1+2e∗2

= d, we obtain the multiplicative

relations cb = a3 and da = b2.
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1.1.4. Affine Toric Varieties. From this point an affine toric variety Uσ as-

sociated with a cone σ can be defined in many equivalent ways. Most convenient in the

present context is to define Uσ as a set of zeros of generators of a toric ideal Iσ. This ap-

proach treats Uσ is treated as an algebraic set in Cnσ , where nσ is the number of generators

of the semigroup Sσ. Equivalently, points of Uσ could be identified with homomorphisms

C[Sσ] → C or with maximal ideals of algebra C[Sσ]. Our final object not only consists of

an affine toric variety Uσ, but it is a pair (Uσ,C[Sσ]) of an affine toric variety Uσ and its

algebra of regular functions.

Definition 1.1.3 (Algebraic variety associated with a cone) Let σ ⊂ NR be a cone.

The algebraic variety Uσ associated with σ is defined as a set of zeros of polynomials of

the form

{∏
χai
ui
−

∏
χbj
uj

}
, where

{∑
aiui =

∑
bjuj, ai, bj ∈ Z>0

}
are relations between the generators of the semigroup Sσ = σ∨ ∩M .
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Example 1.1.5 For 0 ⊂ NR, where dimNR = n, we have C[S0] = C[z1, . . . , zn,
1

z1...zn
].

Thus, I0 = (z1...zn+1 − 1) and U0 = (C∗)n. Because 0 is a special cone and its affine toric

variety U0 = (C∗)n plays a crucial role in the theory of toric varieties, we will use notation

U0 = (C∗)n = T n and call T n an algebraic torus of dimension n.

Example 1.1.6 Consider σ = e1R≥0 + . . . + enR≥0 ⊂ NR, where e1, ..., en is a basis of

NR = Rn. Then σ∨ = {u ∈ MR : ∀v∈σ (u, v) ≥ 0} = e∗1R≥0 + . . . + e∗nR≥0 = MR, where

e∗1, ..., e
∗
n is a dual basis in MR = Rn. Thus, Sσ = Nn and C[Sσ] = C[Nn] = C[z1, ..., zn].

The ideal is Iσ = (0), and we finally obtain Uσ = Cn.

Example 1.1.7 Let σ = e1R≥0 + ... + edR≥0 ⊂ NR, where e1, ..., ed is a part of a basis

of NR = Rn and d < n. Then σ∨ = {u ∈ MR : ∀v∈σ (u, v) ≥ 0} = e∗1R≥0 + ... + e∗dR≥0 +

e∗d+1R≥0 + (−e∗d+1)R≥0 + . . . + e∗nR≥0 + (−e∗n)R≥0 ⊂ MR; therefore, Sσ = Nd × Zn−d

and C[Sσ] = C[Nd × Zn−d] = C[z1, . . . , zn,
1

zd+1...zn
]. Then Iσ = (zd+1 . . . zn+1 − 1) and

Uσ = Cd × (C∗)n−d.
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1.2 GLUING AFFINE TORIC VARIETIES

This Section explains how to glue affine toric varieties along open and dense subsets which

are, in fact, affine toric varieties. These subvarieties are related to faces of a cone.

1.2.1. Faces. Any face of a cone is determined by a hyperplane and a half-

space. First, therefore, we recall their definitions. For 0 ̸= u ∈ MR, we define a hyperplane

Hu = {v ∈ NR : (u, v) = 0} and the half-space H+
u = {v ∈ NR : (u, v) ≥ 0}.

Definition 1.2.1 (Face of a cone) A subset τ ⊂ σ is a face of σ if τ = Hu ∩ σ for

some 0 ̸= u ∈ MR and σ ⊂ H+
u . We will use notation τ ≺ σ for faces of σ.

In the following theorems the cone σ is considered its own face. Hyperplanes and

half-spaces define not only faces of a cone, but the whole cone. Obviously, the finite inter-

section of (closed) half-spaces is a convex polyhedral cone, but there is a much stronger

result, which claims that any n-dimensional cone is an intersection of half-spaces deter-

mined by its (n− 1)-dimensional faces:
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Theorem 1.2.1 ([1], Lec. 1, Prop. 3.4) Let σ be a convex n-dimensional cone and let

τi, i = 1, ..., k be its (n− 1)-dimensional faces, such that τi = σ ∩Hui
for some collection

of ui ∈ MR. Then σ =
k∩

i=1

H+
ui
.

Of course, any face is a cone itself; and σ0 is a face of any cone. The natural questions

are: Which affine toric varieties are associated with faces? And how are they related to

the affine variety defined by the cone? First, we define a dual to the face τ .

Definition 1.2.2 (Dual faces) Let τ ≺ σ; then the dual to τ is: τ ∗ = {u ∈ σ∨ :

∀v∈τ (u, v) = 0}.

Proposition 1.2.1 ([1], Lec. 1, Prop. 3.6) If τ ∗ is a face of σ∨, then the correspon-

dence τ → τ ∗ between faces of σ and faces of σ∨ is 1-1.
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1.2.2. Fans and Toric Varieties. This subsection provides the definition of a

fan, which is a set of cones. This definition allows us to glue affine toric varieties. Notice

that the cone {0} belongs to any fan. Figure 1.4 shows an example of a fan.

Figure 1.4: Example of a fan in R2

Definition 1.2.3 (Fan) Let N be a lattice. A fan (Σ, N) is a finite, nonempty set of

strictly convex rational polyhedral cones in NR satisfying the following conditions:

1. If σ ∈ Σ and τ ≺ σ, then τ ∈ Σ.

2. If σ1, σ2 ∈ Σ, then σ1 ∩ σ2 ≺ σ1 and σ1 ∩ σ2 ≺ σ2.

We say that Π is a subfan of a fan Σ if Π is a fan and Π ⊂ Σ.
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The following two propositions prepare us to glue affine toric varieties along common

affine toric subvarieties.

Proposition 1.2.2 ([1], Lec. 1, Prop. 5.6) If τ1, τ2 ≺ σ are faces such that τ1∩τ2 ≺ σ,

then Sτ1∩τ2 = Sτ1 + Sτ2.

Here, the notation (Uσ1)χu is used to describe the subset of Uσ1 , where the character

χu does not vanish. Similarly, (Uσ2)χ−u describes the subset of Uσ2 , where the character

χ−u does not vanish.

Proposition 1.2.3 ([12], Prop. 1.3) If τ ≺ σ1 and τ ≺ σ2, then both Uτ ↪→ Uσ2 and

Uτ ↪→ Uσ1 are open embeddings, and

τ = Hu ∩ σ1 for u ∈ Sσ1 and τ = H−u ∩ σ2 for − u ∈ Sσ2 ;

therefore,

Uτ = (Uσ1)χu ⊂ Uσ1 and Uτ = (Uσ2)χ−u ⊂ Uσ2 .

Using analytic language, the propositions state that if φ1 : Uτ → Uσ1 and φ2 : Uτ →

Uσ2 are open embeddings, then the images of points from Uτ can be identified. Therefore,

the map is determined by φ2 ◦ φ−1
1 : φ1(Uτ ) → φ2(Uτ ), where φ2 ◦ φ−1

1 is an n-tuple

of Laurent monomials (i.e. φ2 ◦ φ−1
1 (z1, . . . , zn) =

(
z
α1,1

1 . . . z
α1,n
n , . . . , z

αn,1

1 . . . z
αn,n
n

)
with

αi,j ∈ Z for i, j = 1, . . . , n and det (αi,j) = ±1 ).

13



The following definition ([12], Theorem 1.4) clarifies this idea.

Definition 1.2.4 (Toric variety) Let (Σ, N) be a fan. Then the toric variety XΣ as-

sociated with Σ is defined as follows. For any cone σ ∈ Σ, take an affine toric variety

Uσ with its algebra of regular functions C[Sσ]. And for such a collection {Uσ,C[Sσ]}σ∈Σ,

notice that conditions described above imply that affine toric varieties can be glued along

affine toric varieties associated with their common faces. This construction gives the toric

variety associated with the fan Σ.

Toric varieties are Hausdorff complex analytic spaces as described in [12], Theorem

1.4. Moreover, nonsingularity conditions of a toric variety can be expressed in terms of

the fan. In the next theorem, Z-basis means a basis with coefficients in Z that is also

invertible over Z.

Theorem 1.2.2 ([12], Theorem 1.10) The toric variety XΣ associated with a fan Σ

in N is nonsingular, i.e., a complex manifold, if and only if for each σ ∈ Σ there exists a

Z-basis {n1, . . . , nr} of N and s ≤ r such that σ = n1R≥0 + . . . + nsR≥0.
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1.2.3. Torus Action and Orbit Decomposition. The cone {0} ∈ Rn is a

face of any cone and belongs to any fan. Thus, any toric variety contains an algebraic

torus T n = U{0} = (C∗)n as an open and dense subset ([7], Part 2, Section VI, Lemma

3.4). The algebraic torus T n admits a structure of a multiplicative group and acts on itself

by transitions. For t = (t1, . . . , tn) ∈ T n and z = (z1, . . . , zn) ∈ T n, the multiplication t · z

is defined as:

t · z = (t1z1, . . . , tnzn) ∈ T n

Moreover, the action can be extended naturally and continuously to the whole toric variety

XΣ as described in [7], Part 2, Section VI, Theorem 5.2 and 5.3.

Definition 1.2.5 (An orbit) Let G be a group that acts on a set X. An orbit Op of a

point p ∈ X is defined as follows:

Op = {x ∈ X : x = g· p for some g ∈ G}

where g· p describes an action of g ∈ G on p ∈ X.

Since the torus T n itself is an open orbit, other orbits are contained in its closure. (See

[7], Part 2, Section VI, Theorem 5.3.) On toric varieties, the orbits are described by the

cones and their faces. Let Oτ be an orbit defined by a cone τ ∈ Σ. Then the orbit defined

by τ is a torus as well, but of lower dimension:
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Lemma 1.2.1 ([2], Lecture 5, Lemma 1.2) For τ ∈ Σ ⊂ N with dimN = n,

dimOτ + dimτ = n and Oτ ≃ Cn−dimτ .

There are no orbits in XΣ other than those defined by the cones τ ∈ Σ:

Lemma 1.2.2 ([2], Lecture 5, Lemma 1.3) Every orbit of the torus action on XΣ

is of the form Oτ for some τ ∈ Σ.

Notice that the closures of orbits V (τ) = Oτ consist of tori of lower dimension than dimOτ

and are invariant subsets of XΣ. Particularly, the closure of the open orbit T n is the whole

toric variety XΣ.

Theorem 1.2.3 ([2], Lecture 5, Theorem 1.9) The orbits Oτ , the orbits closures

V (τ), and the affine open subset Uσ of a toric variety XΣ are related as follows:

(i) Uσ =
∪
τ≺σ

Oτ ;

(ii) V (τ) =
∪
τ≺γ

Oγ;

(iii) Oτ = V (τ) \
∪
τ≺γ

V (γ).

Consider the following example of a smooth 2-dimensional toric variety Ek with a

projective curve defined by the cone e2R≥0. The fan of E2 is shown in Figure 1.5.
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Figure 1.5: The fan of the toric variety E2

Example 1.2.1 The toric variety Ek for k ∈ Z is described by the fan:

Σ = {0, e1R≥0, e2R≥0, (−1e1 + ke2)R≥0, e1R≥0 + e2R≥0, e2R≥0 + (−1e1 + ke2)R≥0}.

The variety Ek consists of two patches X0 and X1, associated respectively with 2-dimensional

cones σ0 = e1R≥0 + e2R≥0 and σ1 = e2R≥0 + (−1e1 + ke2)R≥0. The coordinates (z, w) ∈

X0 ≃ C2 and (z1, w1) ∈ X1 ≃ C2 are related on X0 ∩X1 ≃ C∗ ×C1 according to the rule:

z1 =
1

z
and w1 = zkw

Ek contains a projective curve, which is the orbit closure of Oτ with τ = e2R≥0. Since τ

is a face of the cones σ0 = e1R≥0 + e2R≥0 and σ1 = e2R≥0 + (−1e1 + ke2)R≥0, we obtain

V (τ) ≃ P1.
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1.2.4. Mappings Between Toric Varieties. For a complete view on toric

varieties, we must define mappings between them and maps between the associated fans.

Definition 1.2.6 (Map of fans) φ : (∆1, N1) → (∆2, N2) is a map of fans if it is a Z

linear homomorphism φ : N1 → N2 that satisfies the property that for any σ ∈ ∆1 there

exists τ ∈ ∆2 such that φ(σ) ⊂ τ .

A map between fans allows us to define a map between toric varieties in a covariant way.

The algebraic torus T , if considered in different lattices, needs a subscript. The next

theorem uses the notation: TNi
= Ni ⊗Z C∗ ≃ (C∗)dimNi for i = 1, 2.

Theorem 1.2.4 ([12], Theorem 1.13) A map of fans φ : (Σ1, N1) → (Σ2, N2) gives

rise to a holomorphic map φ∗ : X(Σ1) → X(Σ2) whose restriction to the open subset TN1

coincides with the homomorphism of algebraic tori φ ⊗ 1 : TN1 → TN2 arising from φ.

Through this homomorphism, φ∗ is equivariant with respect to the actions of TN1 and TN2

on the toric varieties. Conversely, suppose f : TN1 → TN2 is a homomorphism of algebraic

tori, and φ∗ : XΣ1 → XΣ2 is a holomorphic map equivariant with respect to f . Then there

exists a unique Z linear homomorphism φ : N1 → N2, which gives rise to a map of fans

φ : (Σ1, N1) → (Σ2, N2) such that f = φ∗.

It is worth noting at this point that, particularly if Σ1 is a subfan of Σ2, then the embed-

ding φ : Σ1 → Σ2 induces an embedding of toric varieties φ∗ : XΣ1 → XΣ2 .
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