(1) Find the general solution of the following differential equations.
 (a) \(y^{(6)}(t) + 64y(t) = 0. \)
 (b) \(y^{(3)}(t) + 3y^{(2)}(t) + 2y'(t) = 0. \)
 (c) \(y^{(4)}(t) - 8y^{(2)}(t) + 16y = 0. \)
 (d) \(y^{(6)}(t) + 2y^{(3)}(t) + y(t) = 0. \)
 (e) \((D^2 - 4D + 13)^2(D - 2)^2y(t) = 0. \)

(2) Use the method of Annihilators to find the form of particular solution of the following problems.
 (a) \((D^3 - 2D^2 + D)y = t + \cos(t) + t\sin(t) + t^2e^t. \)
 (b) \((D^3 + D)y = t + \cos(t) + t\sin(t) + t^2e^t. \)
 (c) \(y''(t) + 2y'(t) + 2y(t) = 3te^{-t}\cos(t). \)

(3) Use Laplace’s transform to find the solution of the following initial value problems.
 (a) \(y^{(3)}(t) - 3y^{(2)}(t) + 2y'(t) = e^{4t} \text{ with } y(0) = 1, y'(0) = 0 \text{ and } y''(0) = 0. \)
 (b) \(y''(t) + y(t) = \sin(2t) \text{ with } y(0) = 0, y'(0) = 0. \)
 (c) \(y''(t) + 4y = g(t) \text{ with } y(0) = 0 \text{ and } y'(0) = 0 \) where
 \[
 g(t) = \begin{cases}
0, & 0 \leq t < 2, \\
3(t - 2), & 2 \leq t < 4, \\
6, & 4 \leq t.
\end{cases}
\]
 (d) \(y''(t) + 5y'(t) + 4y = g(t) \text{ with } y(0) = 0 \text{ and } y'(0) = 0 \) where
 \[
 g(t) = \begin{cases}
0, & 0 \leq t < 2, \\
3(t - 2), & 2 \leq t < 4, \\
6, & 4 \leq t.
\end{cases}
\]
 (e) \(y''(t) + 4y'(t) + 5y = g(t) \text{ with } y(0) = 0 \text{ and } y'(0) = 0 \) where
 \[
 g(t) = \begin{cases}
0, & 0 \leq t < 2, \\
1, & 2 \leq t < 4, \\
0, & 4 \leq t.
\end{cases}
\]
 (f) \(y''(t) + 5y'(t) + 4y(t) = \delta(t - 2), \text{ with } y(0) = 1 \text{ and } y'(0) = 1. \)
 (g) \(y''(t) + 4y'(t) + 5y(t) = \delta(t - 2), \text{ with } y(0) = 0 \text{ and } y'(0) = 0. \)
 (h) \(y''(t) - 4y'(t) + 4y(t) = \delta(t - 2), \text{ with } y(0) = 0 \text{ and } y'(0) = 0. \)

(4) Express the solution of the given initial value problem in terms of the convolution integral.
 (a) \(y''(t) + 4y'(t) + 5y(t) = e^{2t}\cos(t), \text{ with } y(0) = 0 \text{ and } y'(0) = 0. \)
 (b) \(y''(t) - 2y'(t) + y(t) = te^t, \text{ with } y(0) = 0 \text{ and } y'(0) = 0. \)
 (c) \(y''(t) - 3y'(t) + 2y(t) = te^t + te^{2t}, \text{ with } y(0) = 0 \text{ and } y'(0) = 0. \)