Solution to HW 9

1. (Sec 4.1 Problem 6) (15 pts) We rewrite the equation \((x^2 - 4)y''(t) + x^2y'''(t) + 9y = 0 \) as \(y''(t) + \frac{x^2}{x^2 - 4}y'''(t) + \frac{9}{x^2 - 4}y = 0 \). Now the function \(\frac{x^2}{x^2 - 4} \) and \(\frac{9}{x^2 - 4} \) are continuous on \((-\infty, -2) \cup (-2, 2) \cup (2, \infty)\). So the solution exists on \((-\infty, -2) \cup (-2, 2) \cup (2, \infty)\).

2. (Sec 4.2 Problem 12) (15 pts) \(y''(t) - 3y'(t) + 3y(t) - y = 0 \).
 The characteristic equation of \(y''(t) - 3y'(t) + 3y(t) - y = 0 \) is \(r^3 - 3r^2 + 3r - 1 = (r^3 - 1) - 3r(r - 1) = (r - 1)(r^2 + r + 1) - 3r(r - 1) = (r - 1)(r^2 + r + 1 - 3r) = (r - 1)(r^2 - 2r + 1) = (r - 1)^3 = 0 \). So \(r = 3 \) is a root of characteristic equation of order 3. The general solution is \(y(t) = c_1e^t + c_2te^t + c_3t^2e^t \).

3. (Sec 4.2 Problem 15) (25 pts) The characteristic equation of \(y''(t) + y(t) = 0 \) is \(r^2 + 1 = 0 \). So \(r = \pm i \) is \(k \) is an integer. Now \(r = e^{i(\pi + 2k\pi)} \) for \(k = 0, 1, 2, 3, 4 \) and 5. So \(r = e^{i(\pi/2)} = \cos(\pi/2) + i \sin(\pi/2) = \sqrt{2} + i \), \(r = e^{i(3\pi/2)} = \cos(3\pi/2) + i \sin(3\pi/2) = i \), \(r = e^{i(5\pi/2)} = \cos(5\pi/2) + i \sin(5\pi/2) = -\sqrt{2} + i \), \(r = e^{i(7\pi/2)} = \cos(7\pi/2) + i \sin(7\pi/2) = -i \), \(r = e^{i(9\pi/2)} = \cos(9\pi/2) + i \sin(9\pi/2) = \sqrt{2} - i \). So \(r = \pm i \) and \(r = \mp i \). Thus the general solution is \(y(t) = c_1e^{\sqrt{2}t} \cos(t/2) + c_2e^{-\sqrt{2}t} \sin(t/2) + c_3 \cos(t) + c_4 \sin(t) + c_5 e^{-\sqrt{2}t} \cos(\pi/2) + c_6 e^{-\sqrt{2}t} \sin(\pi/2) \).

4. (Sec 4.2 Problem 22) (20 pts) \(y''(t) + 2y'(t) + y = 0 \).
 The characteristic equation of \(y''(t) + 2y'(t) + y = 0 \) is \(r^2 + 2r + 1 = (r + 1)^2 \). Its roots are \(r = \pm i \) with multiplicity 2. The general solution is \(y(t) = c_1 \cos(t) + c_2 \sin(t) + c_3 \cos(t) + c_4 \sin(t) \).

5. (Sec 4.2 Problem 29) (25 pts) \(y''(t) + y'(t) = 0 \) with \(y(0) = 0 \), \(y'(0) = 1 \) and \(y''(0) = 2 \).
 The characteristic equation of \(y''(t) + y'(t) = 0 \) is \(r^3 + r = r(r^2 + 1) \). Its roots are \(r = \pm i \) and \(r = 0 \). The general solution is \(y(t) = c_1 \cos(t) + c_2 \sin(t) + c_3 \). So \(y'(t) = -c_1 \sin(t) + c_2 \cos(t) \) and \(y''(t) = -c_1 \cos(t) - c_2 \sin(t) \). Using \(y(0) = 0 \), \(y'(0) = 1 \), \(y''(0) = 2 \), \(\cos(0) = 1 \) and \(\sin(0) = 0 \), we have \(c_1 + c_3 = 0 \), \(c_2 = 1 \) and \(-c_1 = 2 \). Hence \(c_1 = -2 \), \(c_2 = 1 \) and \(c_3 = -c_1 = 2 \). The solution to the IVP is \(y(t) = -2 \cos(t) + \sin(t) + 2 \).