FINITE RANK TOEPLITZ OPERATORS

TRIEU LE

ABSTRACT. In this note we offer a simplified proof of a theorem by Borichev and Rozenblum \cite{2} on finite rank Toeplitz operators whose symbols may have unbounded supports.

For the background on the problem, the reader is referred to \cite{1, 2}. It is now a well-known result of D. Luecking \cite{4} that if μ is a complex Borel measure with a compact support such that the functional

$$ (T_\mu p)(q) = \int_C p\overline{q} \, d\mu \quad \text{for } p, q \text{ analytic polynomials}, $$

has finite rank, then μ is a finite combination of point masses. As a consequence, if φ is a bounded function with a compact support and T_φ has finite rank on the Fock space \mathcal{F}^2, then $\varphi \equiv 0$.

Luecking’s proof does not carry over to the case where the measure μ has an unbounded support. In fact, there are examples where $\mu \not\equiv 0$ but $T_\mu \equiv 0$. This was discovered by Grudsky and Vasilevski \cite{3}. Concrete examples were presented in \cite[Proposition 4.6]{1}.

In \cite{5}, Rozenblum obtained Luecking’s Theorem for non-compactly supported measures with certain decay restrictions at infinity. Very recently, Borichev and Rozenblum \cite{2} settled the finite rank problem, proving that if φ is bounded and T_φ has finite rank on \mathcal{F}^2, then $\varphi \equiv 0$. In this note we provide a simplification of their proof.

We first recall the following result from \cite{1}.

Lemma 1. Let φ be a bounded measurable function. Suppose f_1, \ldots, f_N and g_1, \ldots, g_N are functions in \mathcal{F}^2 such that $T_\varphi = \sum_{j=1}^{N} \langle \cdot, f_j \rangle g_j$. Then the function $W(z) = \sum_{j=1}^{N} f_j(z)g_j(-z)$ and all of its partial derivatives vanish at infinity.

Furthermore, if $W \equiv 0$, then $\varphi \equiv 0$ almost everywhere.

It was shown in \cite{2} that such a function W in Lemma 1 must vanish identically on \mathbb{C}. The main purpose of this note is to provide a simplified proof of this result.

Theorem 2 (Borichev-Rozenblum). Let f_1, \ldots, f_N and g_1, \ldots, g_N be entire functions. Put

$$ F(z) = f_1(z)g_1(z) + \cdots + f_N(z)g_N(z) \quad \text{for } z \in \mathbb{C}. $$

Suppose all partial derivatives $\partial_z^k \partial_{\overline{z}}^l F$ with $0 \leq k, l \leq N-1$ vanish at infinity. Then $F(z) = 0$ for all $z \in \mathbb{C}$.

1
We first prove an auxiliary result. We shall think of any vector in \(\mathbb{C}^N \) as a column vector. For \(\mathbf{v}_0, \ldots, \mathbf{v}_{N-1} \) in \(\mathbb{C}^N \), we use \(\det(\mathbf{v}_0, \ldots, \mathbf{v}_{N-1}) \) to denote the determinant of the matrix whose \(j \)th column is the vector \(\mathbf{v}_j \), for each \(0 \leq j \leq N - 1 \).

Lemma 3. Let \(\mathbf{v}_0, \ldots, \mathbf{v}_{N-1} \) and \(\mathbf{u}_0, \ldots, \mathbf{u}_{N-1} \) be vectors in \(\mathbb{C}^N \). Suppose there is a number \(\epsilon > 0 \) such that \(|\langle \mathbf{v}_k, \mathbf{u}_l \rangle| \leq \epsilon \) for all \(0 \leq k, l \leq N - 1 \). Then

\[
|\det(\mathbf{v}_0, \ldots, \mathbf{v}_{N-1}) \det(\mathbf{u}_0, \ldots, \mathbf{u}_{N-1})| \leq (\epsilon \sqrt{N})^N.
\]

Proof. Let \(A \) denote the matrix whose columns are the vectors \(\mathbf{v}_0, \ldots, \mathbf{v}_{N-1} \) and \(B \) be the matrix whose columns are \(\mathbf{u}_0, \ldots, \mathbf{u}_{N-1} \). By assumption, the modulus of each entry of the product \(B^*A \) is at most \(\epsilon \). Hadamard’s inequality gives \(|\det(B^*A)| \leq (\epsilon \sqrt{N})^N \). Since

\[
|\det(B^*A)| = |\det(B^*) \det(A)| = |\det(B) \det(A)| = |\det(\mathbf{v}_0, \ldots, \mathbf{v}_{N-1}) \det(\mathbf{u}_0, \ldots, \mathbf{u}_{N-1})|,
\]

the conclusion of the lemma follows. \(\square \)

Proof of Theorem 2. For the purpose of obtaining a contradiction, suppose \(W \) were not identically zero on \(\mathbb{C} \). By combining the functions if necessary, we may assume that the functions \(f_1, \ldots, f_N \) are linearly independent and \(g_1, \ldots, g_N \) are also linearly independent, where \(N \geq 1 \).

For \(0 \leq j \leq N - 1 \), let \(\mathbf{v}_j \) (respectively, \(\mathbf{u}_j \)) be a column vector whose components are the derivatives \(f_1^{(j)}, \ldots, f_N^{(j)} \) (respectively, \(g_1^{(j)}, \ldots, g_N^{(j)} \)). Let \(F \) (respectively, \(G \)) denote the Wronskian of the functions \(f_1, \ldots, f_N \) (respectively, \(g_1, \ldots, g_N \)). We then have \(F(z) = \det(\mathbf{v}_1(z), \ldots, \mathbf{v}_N(z)) \) and \(G(z) = \det(\mathbf{u}_1(z), \ldots, \mathbf{u}_N(z)) \).

Let \(\epsilon > 0 \) be given. By the hypothesis, there is a number \(R_\epsilon > 0 \) such that

\[
|\langle \mathbf{v}_k(z), \mathbf{u}_l(z) \rangle| = |f_1^{(k)}(z)\overline{g}_1^{(l)}(z) + \cdots + f_N^{(k)}(z)\overline{g}_N^{(l)}(z)| \leq \epsilon,
\]

for \(|z| > R_\epsilon \) and all \(0 \leq k, l \leq N - 1 \). Using Lemma 3, we conclude that \(|F(z)G(z)| \leq (\epsilon \sqrt{N})^N \) for all such \(z \). This implies that the entire function \(F \cdot G \) vanishes at infinity. It follows that either \(F \equiv 0 \) or \(G \equiv 0 \). Without loss of generality, we may assume that \(F \equiv 0 \), which implies that the functions \(f_1, \ldots, f_N \) are linearly dependent. This gives a contraction. \(\square \)

Combining Theorem 2 and Lemma 3, we conclude

Theorem 4 (Borichev-Rozenblum). Let \(\varphi \) be a bounded function on \(\mathbb{C} \). If \(T_\varphi \) has finite rank on \(\mathcal{F}^2 \), then \(\varphi = 0 \) almost everywhere.

References

Department of Mathematics and Statistics, Mail Stop 942, University of Toledo, Toledo, OH 43606

E-mail address: trieutle2@utoledo.edu